Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 5250, 2024 03 04.
Article in English | MEDLINE | ID: mdl-38438488

ABSTRACT

The frequency and intensity of summer extreme climate events are increasing over time, and have a substantial negative effect on plants, which may be evident in their impact on photosynthesis. Here, we examined the photosynthetic responses of Larix kaempferi and Pinus densiflora seedlings to extreme heat (+ 3 °C and + 6 °C), drought, and heavy rainfall by conducting an open-field multifactor experiment. Leaf gas exchange in L. kaempferi showed a decreasing trend under increasing temperature, showing a reduction in the stomatal conductance, transpiration rate, and net photosynthetic rate by 135.2%, 102.3%, and 24.8%, respectively, in the + 6 °C treatment compared to those in the control. In contrast, P. densiflora exhibited a peak function in the stomatal conductance and transpiration rate under + 3 °C treatment. Furthermore, both species exhibited increased total chlorophyll contents under extreme heat conditions. However, extreme precipitation had no marked effect on photosynthetic activities, given the overall favorable water availability for plants. These results indicate that while extreme heat generally reduces photosynthesis by triggering stomatal closure under high vapor pressure deficit, plants employ diverse stomatal strategies in response to increasing temperature, which vary among species. Our findings contribute to the understanding of mechanisms underlying the photosynthetic responses of conifer seedlings to summer extreme climate events.


Subject(s)
Extreme Heat , Larix , Pinus , Seedlings , Photosynthesis
2.
J Environ Manage ; 356: 120556, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38537457

ABSTRACT

Invasive alien plants (IAPs) pose significant threats to native ecosystems and biodiversity worldwide. However, the understanding of their precise impact on soil carbon (C) dynamics in invaded ecosystems remains a crucial area of research. This review comprehensively explores the mechanisms through which IAPs influence soil C pools, fluxes, and C budgets, shedding light on their effects and broader consequences. Key mechanisms identified include changes in litter inputs, rates of organic matter decomposition, alterations in soil microbial communities, and shifts in nutrient cycling, all driving the impact of IAPs on soil C dynamics. These mechanisms affect soil C storage, turnover rates, and ecosystem functioning. Moreover, IAPs tend to increase gross primary productivity and net primary productivity leading to the alterations in fluxes and C budgets. The implications of IAP-induced alterations in soil C dynamics are significant and extend to plant-soil interactions, ecosystem structure, and biodiversity. Additionally, they have profound consequences for C sequestration, potentially impacting climate change mitigation. Restoring native plant communities, promoting soil health, and implementing species-specific management are essential measures to significantly mitigate the impacts of IAPs on soil C dynamics. Overall, understanding and mitigating the effects of IAPs on soil C storage, nutrient cycling, and related processes will contribute to the conservation of native biodiversity and complement global C neutrality efforts.


Subject(s)
Ecosystem , Introduced Species , Soil/chemistry , Carbon , Biodiversity , Plants , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL