Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Molecules ; 25(23)2020 Dec 03.
Article En | MEDLINE | ID: mdl-33287202

Vitamin E, a natural antioxidant, is of interest to scientists, health care pundits and faddists; its nutritional and biomedical attributes may be validated, anecdotal or fantasy. Vitamin E is a mixture of tocopherols (TPs) and tocotrienols (T-3s), each class having four substitutional isomers (α-, ß-, γ-, δ-). Vitamin E analogues attain only low concentrations in most tissues, necessitating exacting invasive techniques for analytical research. Quantitative positron emission tomography (PET) with an F-18-labeled molecular probe would expedite access to Vitamin E's biodistributions and pharmacokinetics via non-invasive temporal imaging. (R)-6-(3-[18F]Fluoropropoxy)-2,7,8-trimethyl-2-(4,8,12-trimethyltrideca-3,7,11-trien-1-yl)-chromane ([18F]F-γ-T-3) was prepared for this purpose. [18F]F-γ-T-3 was synthesized from γ-T-3 in two steps: (i) 1,3-di-O-tosylpropane was introduced at C6-O to form TsO-γ-T-3, and (ii) reaction of this tosylate with [18F]fluoride in DMF/K222. Non-radioactive F-γ-T-3 was synthesized by reaction of γ-T-3 with 3-fluoropropyl methanesulfonate. [18F]F-γ-T-3 biodistribution in a murine tumor model was imaged using a small-animal PET scanner. F-γ-T-3 was prepared in 61% chemical yield. [18F]F-γ-T-3 was synthesized in acceptable radiochemical yield (RCY 12%) with high radiochemical purity (>99% RCP) in 45 min. Preliminary F-18 PET images in mice showed upper abdominal accumulation with evidence of renal clearance, only low concentrations in the thorax (lung/heart) and head, and rapid clearance from blood. [18F]F-γ-T-3 shows promise as an F-18 PET tracer for detailed in vivo studies of Vitamin E. The labeling procedure provides acceptable RCY, high RCP and pertinence to all eight Vitamin E analogues.


Fluorides/chemistry , Fluorine Radioisotopes/chemistry , Tissue Distribution/physiology , Tocotrienols/chemistry , Tocotrienols/pharmacokinetics , Vitamin E/chemistry , Vitamin E/pharmacokinetics , Animals , Antioxidants/chemistry , Antioxidants/pharmacokinetics , Cell Line, Tumor , Female , Fluorides/pharmacokinetics , Fluorine Radioisotopes/pharmacokinetics , Humans , Isotope Labeling/methods , Mice , Mice, Inbred BALB C , Mice, Nude , Molecular Probes/chemistry , Molecular Probes/pharmacokinetics , Oxidation-Reduction , Positron-Emission Tomography/methods , Radiochemistry/methods , Radiopharmaceuticals/metabolism , gamma-Tocopherol/chemistry , gamma-Tocopherol/pharmacokinetics
2.
Inorg Chem ; 58(7): 4540-4552, 2019 Apr 01.
Article En | MEDLINE | ID: mdl-30869878

The synthesis of new bis(thiosemicarbazonato)copper(II) complexes featuring polyamine substituents via selective transamination reactions is presented. Polyamines of different lengths, with different ionizable substituent groups, were used to modify and adjust the hydrophilic/lipophilic balance of the copper complexes. The new analogues were radiolabeled with copper-64 and their lipophilicities estimated using distribution coefficients. The cell uptake of the new polyamine complexes was investigated with preliminary in vitro biological studies using a neuroblastoma cancer cell line. The in vivo biodistribution of three of the new analogues was investigated in vivo in mice using positron-emission tomography imaging, and one of the new complexes was compared to [64Cu]Cu(atsm) in an A431 squamous cell carcinoma xenograft model. Modification of the copper complexes with various amine-containing functional groups alters the biodistribution of the complexes in mice. One complex, with a pendent ( N, N-dimethylamino)ethane functional group, displayed tumor uptake similar to that of [64Cu]Cu(atsm) but higher brain uptake, suggesting that this compound has the potential to be of use in the diagnostic brain imaging of tumors and neurodegenerative diseases.


Brain/metabolism , Coordination Complexes/pharmacokinetics , Copper Radioisotopes/chemistry , Polyamines/pharmacokinetics , Radiopharmaceuticals/pharmacokinetics , Thiosemicarbazones/pharmacokinetics , Animals , Cell Line, Tumor , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Female , Humans , Ligands , Mice, Inbred BALB C , Polyamines/chemical synthesis , Polyamines/chemistry , Positron-Emission Tomography , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/chemistry , Thiosemicarbazones/chemical synthesis , Thiosemicarbazones/chemistry , Tissue Distribution
3.
J Nucl Med ; 60(6): 777-785, 2019 06.
Article En | MEDLINE | ID: mdl-30442752

Imaging of somatostatin receptor expression is an established technique for staging of neuroendocrine neoplasia and determining the suitability of patients for peptide receptor radionuclide therapy. PET/CT using 68Ga-labeled somatostatin analogs is superior to earlier agents, but the rapid physical decay of the radionuclide poses logistic and regulatory challenges. 64Cu has attractive physical characteristics for imaging and provides a diagnostic partner for the therapeutic radionuclide 67Cu. Based on promising preclinical studies, we have performed a first-time-in-humans trial of 64Cu-MeCOSar-Tyr3-octreotate (64Cu-SARTATE) to assess its safety and ability to localize disease at early and late imaging time-points. Methods: In a prospective trial, 10 patients with known neuroendocrine neoplasia and positive for uptake on 68Ga-DOTA-octreotate (68Ga-DOTATATE) PET/CT underwent serial PET/CT imaging at 30 min, 1 h, 4 h, and 24 h after injection of 64Cu-SARTATE. Adverse reactions were recorded, and laboratory testing was performed during infusion and at 1 and 7 d after imaging. Images were analyzed for lesion and normal-organ uptake and clearance to assess lesion contrast and perform dosimetry estimates. Results:64Cu-SARTATE was well tolerated during infusion and throughout the study, with 3 patients experiencing mild infusion-related events. High lesion uptake and retention were observed at all imaging time-points. There was progressive hepatic clearance over time, providing the highest lesion-to-liver contrast at 24 h. Image quality remained high at this time. Comparison of 64Cu-SARTATE PET/CT obtained at 4 h to 68Ga-DOTATATE PET/CT obtained at 1 h indicated comparable or superior lesion detection in all patients, especially in the liver. As expected, the highest early physiologic organ uptake was in the kidneys, liver, and spleen. Conclusion:64Cu-SARTATE is safe and has excellent imaging characteristics. High late-retention in tumor and clearance from the liver suggest suitability for diagnostic studies and for prospective dosimetry for 67Cu-SARTATE peptide receptor radionuclide therapy, and the half-life of 64Cu would also facilitate good-manufacturing-practice production and distribution to sites without access to 68Ga.


Neuroendocrine Tumors/diagnostic imaging , Neuroendocrine Tumors/radiotherapy , Octreotide/analogs & derivatives , Positron Emission Tomography Computed Tomography , Radiopharmaceuticals/metabolism , Receptors, Peptide/metabolism , Aged , Biological Transport , Female , Humans , Male , Middle Aged , Neuroendocrine Tumors/metabolism , Octreotide/adverse effects , Octreotide/metabolism , Prospective Studies , Radiometry , Radiopharmaceuticals/adverse effects , Safety
4.
Mol Pharm ; 14(4): 1169-1180, 2017 04 03.
Article En | MEDLINE | ID: mdl-28191977

Control of the biodistribution of radiolabeled peptides has proven to be a major challenge in their application as imaging agents for positron emission tomography (PET). Modification of peptide hydrophilicity in order to increase renal clearance has been a common endeavor to improve overall biodistribution. Herein, we examine the effect of site-specific sulfonation of tyrosine moieties in cyclic(RGDyK) peptides as a means to enhance their hydrophilicity and improve their biodistribution. The novel sulfonated cyclic(RGDyK) peptides were conjugated directly to 4-nitrophenyl 2-[18F]fluoropropionate, and the biodistribution of the radiolabeled peptides was compared with that of their nonsulfonated, clinically relevant counterparts, [18F]GalactoRGD and [18F]FPPRGD2. Site-specific sulfonation of the tyrosine residues was shown to increase hydrophilicity and improve biodistribution of the RGD peptides, despite contributing just 79 Da toward the MW, compared with 189 Da for both the "Galacto" and mini-PEG moieties, suggesting this may be a broadly applicable approach to enhancing biodistribution of radiolabeled peptides.


Fluorine Radioisotopes/metabolism , Peptides, Cyclic/metabolism , Peptides/metabolism , Tissue Distribution/drug effects , Tyrosine/metabolism , Animals , Cell Line, Tumor , Humans , Integrin alphaVbeta3/metabolism , Isotope Labeling/methods , Mice , Mice, Inbred BALB C , Nitrophenols/metabolism , Positron-Emission Tomography/methods , Radiopharmaceuticals/metabolism
5.
Dalton Trans ; 43(3): 1386-96, 2014 Jan 21.
Article En | MEDLINE | ID: mdl-24202174

The use of copper radioisotopes in cancer diagnosis and radionuclide therapy is possible using chelators that are capable of binding Cu(II) with sufficient stability in vivo to provide high tumour-to-background contrast. Here we report the design and synthesis of a new bifunctional chelator, 5-(8-methyl-3,6,10,13,16,19-hexaaza-bicyclo[6.6.6]icosan-1-ylamino)-5-oxopentanoic acid (MeCOSar), that forms copper complexes of exceptional stability by virtue of a cage amine (sarcophagine) ligand and a new conjugate referred to as SarTATE, obtained by the conjugation of MeCOSar to the tumour-targeting peptide Tyr(3)-octreotate. Radiolabeling of SarTATE with (64)Cu(II), a radioisotope suitable for positron emission tomography (PET), was fast (~20 min), easily performed at room temperature and consistently resulted in high radiochemical purity (>99%). In vitro and in vivo evaluation of (64)CuSarTATE demonstrated its high selectivity for tumour cells expressing somatostatin receptor 2 (sstr2). Biodistribution and PET imaging comparisons were made between (64)CuSarTATE and (64)Cu-labeled DOTA-Tyr(3)-octreotate ((64)CuDOTATATE). Both radiopharmaceuticals showed excellent uptake in sstr2-positive tumours at 2 h post-injection. While tumour uptake of (64)CuDOTATATE decreased significantly at 24 h, (64)CuSarTATE activity was retained, improving contrast at later time points. (64)CuSarTATE accumulated less than (64)CuDOTATATE in the non-target organs, liver and lungs. The uptake of (64)CuSarTATE in the kidneys was high at 2 h but showed significant clearance by 24 h. The new chemistry and pre-clinical evaluation presented here demonstrates that MeCOSar is a promising bifunctional chelator for Tyr(3)-octreotate that could be applied to a combined imaging and therapeutic regimen using a combination of (64)Cu- and (67)CuSarTATE complexes, owing to improved tumour-to-non-target organ ratios compared to (64)CuDOTATATE at longer time points.


Amines/chemistry , Coordination Complexes/chemistry , Peptides, Cyclic/chemistry , Radiopharmaceuticals/chemistry , Animals , Cell Line, Tumor , Coordination Complexes/chemical synthesis , Copper Radioisotopes/chemistry , Crystallography, X-Ray , Isotope Labeling , Ligands , Mice , Mice, Inbred BALB C , Molecular Conformation , Neoplasms/diagnostic imaging , Positron-Emission Tomography , Radiography , Radiopharmaceuticals/metabolism , Tissue Distribution
6.
J Labelled Comp Radiopharm ; 56(14): 726-30, 2013 Dec.
Article En | MEDLINE | ID: mdl-24339012

The versatile (18) F-labeled prosthetic group, 4-nitrophenyl 2-[(18) F]fluoropropionate ([(18) F]NFP), was synthesized in a single step in 45 min from 4-nitrophenyl 2-bromopropionate, with a decay corrected radiochemical yield of 26.2% ± 2.2%. Employing this improved synthesis of [(18) F]NFP, [(18) F]GalactoRGD - the current 'gold standard' tracer for imaging the expression of αV ß3 integrin - was prepared with high specific activity in 90 min and 20% decay corrected radiochemical yield from [(18) F]fluoride.


Azides/chemical synthesis , Fluorine Radioisotopes/chemistry , Isotope Labeling/methods , Positron-Emission Tomography , Radiopharmaceuticals/chemical synthesis , Peptides/chemical synthesis
...