Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 124
1.
Malar J ; 22(1): 239, 2023 Aug 21.
Article En | MEDLINE | ID: mdl-37605226

Border malaria is frequently cited as an obstacle to malaria elimination and sometimes used as a justification for the failure of elimination. Numerous border or cross-border meetings and elimination initiatives have been convened to address this bottleneck to elimination. In this Perspective, border malaria is defined as malaria transmission, or the potential for transmission, across or along shared land borders between countries where at least one of them has ongoing malaria transmission. Border malaria is distinct from malaria importation, which can occur anywhere and in any country. The authors' analysis shows that the remaining transmission foci of malaria-eliminating countries tend to occur in the vicinity of international land borders that they share with neighbouring endemic countries. The reasons why international land borders often represent the last mile in malaria elimination are complex. The authors argue that the often higher intrinsic transmission potential, the neglect of investment and development, the constant risk of malaria importation due to cross-border movement, the challenges of implementing interventions in complex environments and uncoordinated action in a cross-border shared transmission focus all contribute to the difficulties of malaria elimination in border areas. Border malaria reflects the limitations of the current tools and interventions for malaria elimination and implies the need for social cohesion, basic health services, community economic conditions, and policy dialogue and coordination to achieve the expected impact of malaria interventions. Given the uniqueness of each border and the complex and multifaceted nature of border malaria, a situation analysis to define and characterize the determinants of transmission is essential to inform a problem-solving mindset and develop appropriate strategies to eliminate malaria in these areas.


Investments , Malaria , Humans , Malaria/epidemiology , Malaria/prevention & control , Movement
3.
Mol Biol Evol ; 38(1): 274-289, 2021 01 04.
Article En | MEDLINE | ID: mdl-32898225

Substantial progress has been made globally to control malaria, however there is a growing need for innovative new tools to ensure continued progress. One approach is to harness genetic sequencing and accompanying methodological approaches as have been used in the control of other infectious diseases. However, to utilize these methodologies for malaria, we first need to extend the methods to capture the complex interactions between parasites, human and vector hosts, and environment, which all impact the level of genetic diversity and relatedness of malaria parasites. We develop an individual-based transmission model to simulate malaria parasite genetics parameterized using estimated relationships between complexity of infection and age from five regions in Uganda and Kenya. We predict that cotransmission and superinfection contribute equally to within-host parasite genetic diversity at 11.5% PCR prevalence, above which superinfections dominate. Finally, we characterize the predictive power of six metrics of parasite genetics for detecting changes in transmission intensity, before grouping them in an ensemble statistical model. The model predicted malaria prevalence with a mean absolute error of 0.055. Different assumptions about the availability of sample metadata were considered, with the most accurate predictions of malaria prevalence made when the clinical status and age of sampled individuals is known. Parasite genetics may provide a novel surveillance tool for estimating the prevalence of malaria in areas in which prevalence surveys are not feasible. However, the findings presented here reinforce the need for patient metadata to be recorded and made available within all future attempts to use parasite genetics for surveillance.


Malaria/transmission , Models, Statistical , Plasmodium/genetics , Adolescent , Child , Child, Preschool , Genetic Variation , Humans , Kenya/epidemiology , Malaria/epidemiology , Malaria/parasitology , Mosquito Vectors/parasitology , Prevalence , Superinfection , Uganda/epidemiology
4.
PLOS Glob Public Health ; 1(12): e0000014, 2021 Dec 07.
Article En | MEDLINE | ID: mdl-35211700

The High Burden High Impact (HBHI) strategy for malaria encourages countries to use multiple sources of available data to define the sub-national vulnerabilities to malaria risk, including parasite prevalence. Here, a modelled estimate of Plasmodium falciparum from an updated assembly of community parasite survey data in Kenya, mainland Tanzania, and Uganda is presented and used to provide a more contemporary understanding of the sub-national malaria prevalence stratification across the sub-region for 2019. Malaria prevalence data from surveys undertaken between January 2010 and June 2020 were assembled form each of the three countries. Bayesian spatiotemporal model-based approaches were used to interpolate space-time data at fine spatial resolution adjusting for population, environmental and ecological covariates across the three countries. A total of 18,940 time-space age-standardised and microscopy-converted surveys were assembled of which 14,170 (74.8%) were identified after 2017. The estimated national population-adjusted posterior mean parasite prevalence was 4.7% (95% Bayesian Credible Interval 2.6-36.9) in Kenya, 10.6% (3.4-39.2) in mainland Tanzania, and 9.5% (4.0-48.3) in Uganda. In 2019, more than 12.7 million people resided in communities where parasite prevalence was predicted ≥ 30%, including 6.4%, 12.1% and 6.3% of Kenya, mainland Tanzania and Uganda populations, respectively. Conversely, areas that supported very low parasite prevalence (<1%) were inhabited by approximately 46.2 million people across the sub-region, or 52.2%, 26.7% and 10.4% of Kenya, mainland Tanzania and Uganda populations, respectively. In conclusion, parasite prevalence represents one of several data metrics for disease stratification at national and sub-national levels. To increase the use of this metric for decision making, there is a need to integrate other data layers on mortality related to malaria, malaria vector composition, insecticide resistance and bionomic, malaria care-seeking behaviour and current levels of unmet need of malaria interventions.

5.
Lancet Infect Dis ; 21(1): 59-69, 2021 01.
Article En | MEDLINE | ID: mdl-32971006

BACKGROUND: Substantial progress has been made in reducing the burden of malaria in Africa since 2000, but those gains could be jeopardised if the COVID-19 pandemic affects the availability of key malaria control interventions. The aim of this study was to evaluate plausible effects on malaria incidence and mortality under different levels of disruption to malaria control. METHODS: Using an established set of spatiotemporal Bayesian geostatistical models, we generated geospatial estimates across malaria-endemic African countries of the clinical case incidence and mortality of malaria, incorporating an updated database of parasite rate surveys, insecticide-treated net (ITN) coverage, and effective treatment rates. We established a baseline estimate for the anticipated malaria burden in Africa in the absence of COVID-19-related disruptions, and repeated the analysis for nine hypothetical scenarios in which effective treatment with an antimalarial drug and distribution of ITNs (both through routine channels and mass campaigns) were reduced to varying extents. FINDINGS: We estimated 215·2 (95% uncertainty interval 143·7-311·6) million cases and 386·4 (307·8-497·8) thousand deaths across malaria-endemic African countries in 2020 in our baseline scenario of undisrupted intervention coverage. With greater reductions in access to effective antimalarial drug treatment, our model predicted increasing numbers of cases and deaths: 224·1 (148·7-326·8) million cases and 487·9 (385·3-634·6) thousand deaths with a 25% reduction in antimalarial drug coverage; 233·1 (153·7-342·5) million cases and 597·4 (468·0-784·4) thousand deaths with a 50% reduction; and 242·3 (158·7-358·8) million cases and 715·2 (556·4-947·9) thousand deaths with a 75% reduction. Halting planned 2020 ITN mass distribution campaigns and reducing routine ITN distributions by 25%-75% also increased malaria burden to a total of 230·5 (151·6-343·3) million cases and 411·7 (322·8-545·5) thousand deaths with a 25% reduction; 232·8 (152·3-345·9) million cases and 415·5 (324·3-549·4) thousand deaths with a 50% reduction; and 234·0 (152·9-348·4) million cases and 417·6 (325·5-553·1) thousand deaths with a 75% reduction. When ITN coverage and antimalarial drug coverage were synchronously reduced, malaria burden increased to 240·5 (156·5-358·2) million cases and 520·9 (404·1-691·9) thousand deaths with a 25% reduction; 251·0 (162·2-377·0) million cases and 640·2 (492·0-856·7) thousand deaths with a 50% reduction; and 261·6 (167·7-396·8) million cases and 768·6 (586·1-1038·7) thousand deaths with a 75% reduction. INTERPRETATION: Under pessimistic scenarios, COVID-19-related disruption to malaria control in Africa could almost double malaria mortality in 2020, and potentially lead to even greater increases in subsequent years. To avoid a reversal of two decades of progress against malaria, averting this public health disaster must remain an integrated priority alongside the response to COVID-19. FUNDING: Bill and Melinda Gates Foundation; Channel 7 Telethon Trust, Western Australia.


COVID-19/epidemiology , Malaria/epidemiology , Malaria/mortality , SARS-CoV-2 , Africa/epidemiology , Antimalarials/therapeutic use , Bayes Theorem , Humans , Incidence , Insecticide-Treated Bednets , Malaria/drug therapy , Malaria/prevention & control , Models, Statistical , Morbidity
6.
Malar J ; 19(1): 356, 2020 Oct 07.
Article En | MEDLINE | ID: mdl-33028337

BACKGROUND: Malaria was first reported in Rwanda in the early 1900s with significant heterogeneity and volatility in transmission over subsequent decades. Here, a comprehensive literature review of malaria transmission patterns and control strategies in Rwanda between 1900 and 2018 is presented to provide insight into successes and challenges in the country and to inform the future of malaria control in Rwanda. METHODS: A systematic literature search of peer-reviewed publications (Web of Knowledge, PubMed, Google Scholar, and the World Health Organization Library (WHOLIS) and grey literature on malaria control in Rwanda between 1900 and 2019 was conducted with the following search terms: "malaria"", "Rwanda", "epidemiology", "control", "treatment", and/or "prevention." Reports and other relevant documents were also obtained from the Rwanda National Malaria Control Programme (NMCP). To inform this literature review and evidence synthesis, epidemiologic and intervention data were collated from NMCP and partner reports, the national routine surveillance system, and population surveys. RESULTS: Two hundred sixty-eight peer-reviewed publications and 56 grey literature items were reviewed, and information was extracted. The history of malaria control in Rwanda is thematically described here according to five phases: 1900 to 1954 before the launch of the Global Malaria Eradication Programme (GMEP); (2) Implementation of the GMEP from 1955 to 1969; (3) Post- GMEP to 1994 Genocide; (4) the re-establishment of malaria control from 1995 to 2005, and (5) current malaria control efforts from 2006 to 2018. The review shows that Rwanda was an early adopter of tools and approaches in the early 2000s, putting the country ahead of the curve and health systems reforms created an enabling environment for an effective malaria control programme. The last two decades have seen unprecedented investments in malaria in Rwanda, resulting in significant declines in disease burden from 2000 to 2011. However, in recent years, these gains appear to have reversed with increasing cases since 2012 although the country is starting to make progress again. CONCLUSION: The review shows the impact and fragility of gains against malaria, even in the context of sustained health system development. Also, as shown in Rwanda, country malaria control programmes should be dynamic and adaptive to respond and address changing settings.


Disease Eradication/methods , Malaria/history , History, 20th Century , History, 21st Century , Humans , Malaria/prevention & control , Malaria/transmission , Rwanda
7.
Malar J ; 19(1): 141, 2020 Apr 08.
Article En | MEDLINE | ID: mdl-32268917

BACKGROUND: As more countries progress towards malaria elimination, a better understanding of the most critical health system features for enabling and supporting malaria control and elimination is needed. METHODS: All available health systems data relevant for malaria control were collated from 23 online data repositories. Principal component analysis was used to create domain specific health system performance measures. Multiple regression model selection approaches were used to identify key health systems predictors of progress in malaria control in the 2000-2016 period among 105 countries. Additional analysis was performed within malaria burden groups. RESULTS: There was large heterogeneity in progress in malaria control in the 2000-2016 period. In univariate analysis, several health systems factors displayed a strong positive correlation with reductions in malaria burden between 2000 and 2016. In multivariable models, delivery of routine services and hospital capacity were strongly predictive of reductions in malaria cases, especially in high burden countries. In low-burden countries approaching elimination, primary health center density appeared negatively associated with progress while hospital capacity was positively correlated with eliminating malaria. CONCLUSIONS: The findings presented in this manuscript suggest that strengthening health systems can be an effective strategy for reducing malaria cases, especially in countries with high malaria burden. Potential returns appear particularly high in the area of service delivery.


Disease Eradication/statistics & numerical data , Global Health/statistics & numerical data , Malaria/prevention & control , Humans , Regression Analysis
8.
PLoS Negl Trop Dis ; 13(12): e0007925, 2019 12.
Article En | MEDLINE | ID: mdl-31790408

BACKGROUND: Podoconiosis is a type of elephantiasis characterised by swelling of the lower legs. It is often confused with other causes of tropical lymphedema and its global distribution is uncertain. Here we synthesise the available information on the presence of podoconiosis to produce evidence consensus maps of its global geographical distribution. METHODS AND FINDINGS: We systematically searched available data on podoconiosis in SCOPUS and MEDLINE from inception, updated to 10 May, 2019, and identified observational and population-based studies reporting podoconiosis. To establish existence of podoconiosis, we used the number of cases reported in studies and prevalence data with geographical locations. We then developed an index to assess evidence quality and reliability, assigning each country an evidence consensus score. Using these summary scores, we then developed a contemporary global map of national-level podoconiosis status. There is evidence of podoconiosis in 17 countries (12 in Africa, three in Latin America, and two in Asia) and consensus on presence in six countries (all in Africa). We have identified countries where surveillance is required to further define the presence or absence of podoconiosis. We have highlighted areas where evidence is currently insufficient or conflicting, and from which more evidence is needed. CONCLUSION: The global distribution of podoconiosis is not clearly known; the disease extent and limits provided here inform the best contemporary map of the distribution of podoconiosis globally from available data. These results help identify surveillance needs, direct future mapping activities, and inform prevention plans and burden estimation of podoconiosis.


Elephantiasis/epidemiology , Topography, Medical , Global Health , Humans , Prevalence
9.
Sci Data ; 6(1): 134, 2019 07 25.
Article En | MEDLINE | ID: mdl-31346183

Health facilities form a central component of health systems, providing curative and preventative services and structured to allow referral through a pyramid of increasingly complex service provision. Access to health care is a complex and multidimensional concept, however, in its most narrow sense, it refers to geographic availability. Linking health facilities to populations has been a traditional per capita index of heath care coverage, however, with locations of health facilities and higher resolution population data, Geographic Information Systems allow for a more refined metric of health access, define geographic inequalities in service provision and inform planning. Maximizing the value of spatial heath access requires a complete census of providers and their locations. To-date there has not been a single, geo-referenced and comprehensive public health facility database for sub-Saharan Africa. We have assembled national master health facility lists from a variety of government and non-government sources from 50 countries and islands in sub Saharan Africa and used multiple geocoding methods to provide a comprehensive spatial inventory of 98,745 public health facilities.


Geographic Mapping , Health Facilities/classification , Public Health , Africa South of the Sahara , Geographic Information Systems
10.
Lancet Glob Health ; 7(5): e671-e680, 2019 05.
Article En | MEDLINE | ID: mdl-30926303

BACKGROUND: Podoconiosis is a type of tropical lymphoedema that causes massive swelling of the lower limbs. The disease is associated with both economic insecurity, due to long-term morbidity-related loss of productivity, and intense social stigma. Reliable and detailed data on the prevalence and distribution of podoconiosis are scarce. We aimed to fill this data gap by doing a nationwide community-based study to estimate the number of cases throughout Rwanda. METHODS: We did a population-based cross-sectional survey to determine the national prevalence of podoconiosis. A podoconiosis case was defined as a person with bilateral, asymmetrical lymphoedema of the lower limb present for more than 1 year, who tested negative for Wuchereria bancrofti antigen (determined by Filariasis Test Strip) and specific IgG4 (determined by Wb123 test), and had a history of any of the associated clinical signs and symptoms. All adults (aged ≥15 years) who resided in any of the 30 districts of Rwanda for 10 or more years were invited at the household level to participate. Participants were interviewed and given a physical examination before Filariasis Test Strip and Wb123 testing. We fitted a binomial mixed model combining the site-level podoconiosis prevalence with continuous environmental covariates to estimate prevalence at unsampled locations. We report estimates of cases by district combining our mean predicted prevalence and a contemporary gridded map of estimated population density. FINDINGS: Between June 12, and July 28, 2017, 1 360 612 individuals-719 730 (53%) women and 640 882 (47%) men-were screened from 80 clusters in 30 districts across Rwanda. 1143 individuals with lymphoedema were identified, of whom 914 (80%) had confirmed podoconiosis, based on the standardised diagnostic algorithm. The overall prevalence of podoconiosis was 68·5 per 100 000 people (95% CI 41·0-109·7). Podoconiosis was found to be widespread in Rwanda. District-level prevalence ranged from 28·3 per 100 000 people (16·8-45·5, Nyarugenge, Kigali province) to 119·2 per 100 000 people (59·9-216·2, Nyamasheke, West province). Prevalence was highest in districts in the North and West provinces: Nyamasheke, Rusizi, Musanze, Nyabihu, Nyaruguru, Burera, and Rubavu. We estimate that 6429 (95% CI 3938-10 088) people live with podoconiosis across Rwanda. INTERPRETATION: Despite relatively low prevalence, podoconiosis is widely distributed geographically throughout Rwanda. Many patients are likely to be undiagnosed and morbidity management is scarce. Targeted interventions through a well coordinated health system response are needed to manage those affected. Our findings should inform national level planning, monitoring, and implementation of interventions. FUNDING: Wellcome Trust.


Elephantiasis/epidemiology , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Cross-Sectional Studies , Educational Status , Elephantiasis/diagnosis , Elephantiasis/etiology , Female , Geography , Humans , Male , Middle Aged , Prevalence , Risk Factors , Rwanda/epidemiology , Shoes/statistics & numerical data , Young Adult
11.
Malar J ; 17(1): 340, 2018 Sep 26.
Article En | MEDLINE | ID: mdl-30257697

BACKGROUND: Spatial and temporal malaria risk maps are essential tools to monitor the impact of control, evaluate priority areas to reorient intervention approaches and investments in malaria endemic countries. Here, the analysis of 36 years data on Plasmodium falciparum prevalence is used to understand the past and chart a future for malaria control in Kenya by confidently highlighting areas within important policy relevant thresholds to allow either the revision of malaria strategies to those that support pre-elimination or those that require additional control efforts. METHODS: Plasmodium falciparum parasite prevalence (PfPR) surveys undertaken in Kenya between 1980 and 2015 were assembled. A spatio-temporal geostatistical model was fitted to predict annual malaria risk for children aged 2-10 years (PfPR2-10) at 1 × 1 km spatial resolution from 1990 to 2015. Changing PfPR2-10 was compared against plausible explanatory variables. The fitted model was used to categorize areas with varying degrees of prediction probability for two important policy thresholds PfPR2-10 < 1% (non-exceedance probability) or ≥ 30% (exceedance probability). RESULTS: 5020 surveys at 3701 communities were assembled. Nationally, there was an 88% reduction in the mean modelled PfPR2-10 from 21.2% (ICR: 13.8-32.1%) in 1990 to 2.6% (ICR: 1.8-3.9%) in 2015. The most significant decline began in 2003. Declining prevalence was not equal across the country and did not directly coincide with scaled vector control coverage or changing therapeutics. Over the period 2013-2015, of Kenya's 47 counties, 23 had an average PfPR2-10 of < 1%; four counties remained ≥ 30%. Using a metric of 80% probability, 8.5% of Kenya's 2015 population live in areas with PfPR2-10 ≥ 30%; while 61% live in areas where PfPR2-10 is < 1%. CONCLUSIONS: Kenya has made substantial progress in reducing the prevalence of malaria over the last 26 years. Areas today confidently and consistently with < 1% prevalence require a revised approach to control and a possible consideration of strategies that support pre-elimination. Conversely, there remains several intractable areas where current levels and approaches to control might be inadequate. The modelling approaches presented here allow the Ministry of Health opportunities to consider data-driven model certainty in defining their future spatial targeting of resources.


Communicable Disease Control , Malaria, Falciparum/epidemiology , Plasmodium falciparum/physiology , Child , Child, Preschool , Communicable Disease Control/methods , Humans , Kenya/epidemiology , Malaria, Falciparum/parasitology , Prevalence , Spatio-Temporal Analysis
12.
Infect Dis Poverty ; 7(1): 72, 2018 Jul 06.
Article En | MEDLINE | ID: mdl-29986753

BACKGROUND: Malnutrition and malaria are both significant causes of morbidity and mortality in African children. However, the extent of their spatial comorbidity remains unexplored and an understanding of their spatial correlation structure would inform improvement of integrated interventions. We aimed to determine the spatial correlation between both wasting and low mid upper arm circumference (MUAC) and falciparum malaria among Somalian children aged 6-59 months. METHODS: Data were from 49 227 children living in 888 villages between 2007 to 2010. We developed a Bayesian geostatistical shared component model in order to determine the common spatial distributions of wasting and falciparum malaria; and low-MUAC and falciparum malaria at 1 × 1 km spatial resolution. RESULTS: The empirical correlations with malaria were 0.16 and 0.23 for wasting and low-MUAC respectively. Shared spatial residual effects were statistically significant for both wasting and low-MUAC. The posterior spatial relative risk was highest for low-MUAC and malaria (range: 0.19 to 5.40) and relatively lower between wasting and malaria (range: 0.11 to 3.55). Hotspots for both wasting and low-MUAC with malaria occurred in the South Central region in Somalia. CONCLUSIONS: The findings demonstrate a relationship between nutritional status and falciparum malaria parasitaemia, and support the use of the relatively simpler MUAC measurement in surveys. Shared spatial distribution and distinct hotspots present opportunities for targeted seasonal chemoprophylaxis and other forms of malaria prevention integrated within nutrition programmes.


Malaria, Falciparum/epidemiology , Malnutrition/epidemiology , Parasitemia/epidemiology , Bayes Theorem , Child, Preschool , Comorbidity , Cross-Sectional Studies , Female , Humans , Infant , Male , Nutritional Status , Somalia/epidemiology
13.
BMJ Glob Health ; 3(3): e000730, 2018.
Article En | MEDLINE | ID: mdl-29946487

INTRODUCTION: Understanding the number of cases of podoconiosis, its geographical distribution and the population at risk are crucial to estimating the burden of this disease in endemic countries. We assessed each of these using nationwide data on podoconiosis prevalence in Cameroon. METHODS: We analysed data arising from two cross-sectional surveys in Cameroon. The dataset was combined with a suite of environmental and climate data and analysed within a robust statistical framework, which included machine learning-based approaches and geostatistical modelling. The environmental limits, spatial variation of predicted prevalence, population at risk and number of cases of podoconiosis were each estimated. RESULTS: A total of 214 729 records of individuals screened for podoconiosis were gathered from 748 communities in all 10 regions of Cameroon. Of these screened individuals, 882 (0.41%; 95% CI 0.38 to 0.44) were living with podoconiosis. High environmental suitability for podoconiosis was predicted in three regions of Cameroon (Adamawa, North West and North). The national population living in areas environmentally suitable for podoconiosis was estimated at 5.2 (95% CI 4.7 to 5.8) million, which corresponds to 22.3% of Cameroon's population in 2015. Countrywide, in 2015, the number of adults estimated to be suffering from podoconiosis was 41 556 (95% CI, 1170 to 240 993). Four regions (Central, Littoral, North and North West) contributed 61.2% of the cases. CONCLUSION: In Cameroon, podoconiosis is more widely distributed geographically than was initially expected. The number of cases and the population at risk are considerable. Expanding morbidity management and follow-up of cases is of utmost necessity. Promotion of footwear use and regular foot hygiene should be at the forefront of any intervention plan.

14.
Nature ; 555(7694): 41-47, 2018 02 28.
Article En | MEDLINE | ID: mdl-29493591

Insufficient growth during childhood is associated with poor health outcomes and an increased risk of death. Between 2000 and 2015, nearly all African countries demonstrated improvements for children under 5 years old for stunting, wasting, and underweight, the core components of child growth failure. Here we show that striking subnational heterogeneity in levels and trends of child growth remains. If current rates of progress are sustained, many areas of Africa will meet the World Health Organization Global Targets 2025 to improve maternal, infant and young child nutrition, but high levels of growth failure will persist across the Sahel. At these rates, much, if not all of the continent will fail to meet the Sustainable Development Goal target-to end malnutrition by 2030. Geospatial estimates of child growth failure provide a baseline for measuring progress as well as a precision public health platform to target interventions to those populations with the greatest need, in order to reduce health disparities and accelerate progress.


Child Development , Growth Disorders/epidemiology , Growth , Malnutrition/epidemiology , Wasting Syndrome/epidemiology , Africa/epidemiology , Child, Preschool , Female , Goals , Growth Disorders/prevention & control , Humans , Infant , Infant, Newborn , Male , Malnutrition/prevention & control , Prevalence , Public Health/statistics & numerical data , Thinness/epidemiology , Thinness/prevention & control , Wasting Syndrome/prevention & control , World Health Organization
15.
Malar J ; 17(1): 88, 2018 Feb 20.
Article En | MEDLINE | ID: mdl-29463264

BACKGROUND: Countries planning malaria elimination must adapt from sustaining universal control to targeted intervention and surveillance. Decisions to make this transition require interpretable information, including malaria parasite survey data. As transmission declines, observed parasite prevalence becomes highly heterogeneous with most communities reporting estimates close to zero. Absolute estimates of prevalence become hard to interpret as a measure of transmission intensity and suitable statistical methods are required to handle uncertainty of area-wide predictions that are programmatically relevant. METHODS: A spatio-temporal geostatistical binomial model for Plasmodium falciparum prevalence (PfPR) was developed using data from cross-sectional surveys conducted in Somalia in 2005, 2007-2011 and 2014. The fitted model was then used to generate maps of non-exceedance probabilities, i.e. the predictive probability that the region-wide population-weighted average PfPR for children between 2 and 10 years (PfPR2-10) lies below 1 and 5%. A comparison was carried out with the decision-making outcomes from those of standard approaches that ignore uncertainty in prevalence estimates. RESULTS: By 2010, most regions in Somalia were at least 70% likely to be below 5% PfPR2-10 and, by 2014, 17 regions were below 5% PfPR2-10 with a probability greater than 90%. Larger uncertainty is observed using a threshold of 1%. By 2011, only two regions were more than 90% likely of being < 1% PfPR2-10 and, by 2014, only three regions showed such low level of uncertainty. The use of non-exceedance probabilities indicated that there was weak evidence to classify 10 out of the 18 regions as < 1% in 2014, when a greater than 90% non-exceedance probability was required. CONCLUSION: Unlike standard approaches, non-exceedance probabilities of spatially modelled PfPR2-10 allow to quantify uncertainty of prevalence estimates in relation to policy relevant intervention thresholds, providing programmatically relevant metrics to make decisions on transitioning from sustained malaria control to strategies that encompass methods of malaria elimination.


Disease Transmission, Infectious , Epidemiologic Methods , Malaria, Falciparum/epidemiology , Topography, Medical , Child , Child, Preschool , Cross-Sectional Studies , Female , Health Policy , Humans , Male , Prevalence , Somalia/epidemiology , Spatio-Temporal Analysis
16.
PLoS Negl Trop Dis ; 12(1): e0006126, 2018 01.
Article En | MEDLINE | ID: mdl-29324858

BACKGROUND: Podoconiosis is a non-filarial elephantiasis, which causes massive swelling of the lower legs. It was identified as a neglected tropical disease by WHO in 2011. Understanding of the geographical distribution of the disease is incomplete. As part of a global mapping of podoconiosis, this study was conducted in Cameroon to map the distribution of the disease. This mapping work will help to generate data on the geographical distribution of podoconiosis in Cameroon and contribute to the global atlas of podoconiosis. METHODS: We used a multi-stage sampling design with stratification of the country by environmental risk of podoconiosis. We sampled 76 villages from 40 health districts from the ten Regions of Cameroon. All individuals of 15-years old or older in the village were surveyed house-to-house and screened for lymphedema. A clinical algorithm was used to reliably diagnose podoconiosis, excluding filarial-associated lymphedema. Individuals with lymphoedema were tested for circulating Wuchereria bancrofti antigen and specific IgG4 using the Alere Filariasis Test Strips (FTS) test and the Standard Diagnostics (SD) BIOLINE lymphatic filariasis IgG4 test (Wb123) respectively, in addition to thick blood films. Presence of DNA specific to W. bancrofti was checked on night blood using a qPCR technique. PRINCIPAL FINDINGS: Overall, 10,178 individuals from 4,603 households participated in the study. In total, 83 individuals with lymphedema were identified. Of the 83 individuals with lymphedema, two were found to be FTS positive and all were negative using the Wb123 test. No microfilaria of W. bancrofti were found in the night blood of any individual with clinical lymphedema. None were found to be positive for W. bancrofti using qPCR. Of the two FTS positive cases, one was positive for Mansonella perstans DNA, while the other harbored Loa loa microfilaria. Overall, 52 people with podoconiosis were identified after applying the clinical algorithm. The overall prevalence of podoconiosis was found to be 0.5% (95% [confidence interval] CI; 0.4-0.7). At least one case of podoconiosis was found in every region of Cameroon except the two surveyed villages in Adamawa. Of the 40 health districts surveyed, 17 districts had no cases of podoconiosis; in 15 districts, mean prevalence was between 0.2% and 1.0%; and in the remaining eight, mean prevalence was between 1.2% and 2.7%. CONCLUSIONS: Our investigation has demonstrated low prevalence but almost nationwide distribution of podoconiosis in Cameroon. Designing a podoconiosis control program is a vital next step. A health system response to the burden of podoconiosis is important, through case surveillance and morbidity management services.


Antibodies, Protozoan/blood , Antigens, Helminth/immunology , Elephantiasis/epidemiology , Lymphedema/epidemiology , Neglected Diseases/epidemiology , Animals , Antibodies, Protozoan/immunology , Cameroon/epidemiology , Elephantiasis/diagnosis , Geography , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Lymphedema/diagnosis , Lymphedema/parasitology , Mansonella/isolation & purification , Neglected Diseases/diagnosis , Wuchereria bancrofti/isolation & purification
17.
Int Stat Rev ; 86(3): 571-597, 2018 Dec.
Article En | MEDLINE | ID: mdl-33184527

In this paper, we set out general principles and develop geostatistical methods for the analysis of data from spatio-temporally referenced prevalence surveys. Our objective is to provide a tutorial guide that can be used in order to identify parsimonious geostatistical models for prevalence mapping. A general variogram-based Monte Carlo procedure is proposed to check the validity of the modelling assumptions. We describe and contrast likelihood-based and Bayesian methods of inference, showing how to account for parameter uncertainty under each of the two paradigms. We also describe extensions of the standard model for disease prevalence that can be used when stationarity of the spatio-temporal covariance function is not supported by the data. We discuss how to define predictive targets and argue that exceedance probabilities provide one of the most effective ways to convey uncertainty in prevalence estimates. We describe statistical software for the visualisation of spatio-temporal predictive summaries of prevalence through interactive animations. Finally, we illustrate an application to historical malaria prevalence data from 1 334 surveys conducted in Senegal between 1905 and 2014.

19.
Malar J ; 16(1): 475, 2017 Nov 21.
Article En | MEDLINE | ID: mdl-29162099

BACKGROUND: One pillar to monitoring progress towards the Sustainable Development Goals is the investment in high quality data to strengthen the scientific basis for decision-making. At present, nationally-representative surveys are the main source of data for establishing a scientific evidence base, monitoring, and evaluation of health metrics. However, little is known about the optimal precisions of various population-level health and development indicators that remains unquantified in nationally-representative household surveys. Here, a retrospective analysis of the precision of prevalence from these surveys was conducted. METHODS: Using malaria indicators, data were assembled in nine sub-Saharan African countries with at least two nationally-representative surveys. A Bayesian statistical model was used to estimate between- and within-cluster variability for fever and malaria prevalence, and insecticide-treated bed nets (ITNs) use in children under the age of 5 years. The intra-class correlation coefficient was estimated along with the optimal sample size for each indicator with associated uncertainty. FINDINGS: Results suggest that the estimated sample sizes for the current nationally-representative surveys increases with declining malaria prevalence. Comparison between the actual sample size and the modelled estimate showed a requirement to increase the sample size for parasite prevalence by up to 77.7% (95% Bayesian credible intervals 74.7-79.4) for the 2015 Kenya MIS (estimated sample size of children 0-4 years 7218 [7099-7288]), and 54.1% [50.1-56.5] for the 2014-2015 Rwanda DHS (12,220 [11,950-12,410]). CONCLUSION: This study highlights the importance of defining indicator-relevant sample sizes to achieve the required precision in the current national surveys. While expanding the current surveys would need additional investment, the study highlights the need for improved approaches to cost effective sampling.


Developing Countries/statistics & numerical data , Malaria/prevention & control , Africa South of the Sahara/epidemiology , Bayes Theorem , Humans , Prevalence , Reproducibility of Results , Retrospective Studies , Surveys and Questionnaires
20.
Wellcome Open Res ; 2: 78, 2017.
Article En | MEDLINE | ID: mdl-29152596

BACKGROUND: In 2011, the World Health Organization recognized podoconiosis as one of the neglected tropical diseases. Nonetheless, the number of people with podoconiosis and the geographical distribution of the disease is poorly understood. Based on a nationwide mapping survey and geostatistical modelling, we predict the prevalence of podoconiosis and estimate the number of cases across Ethiopia. METHODS: We used nationwide data collected in Ethiopia between 2008 and 2013. Data were available for 141,238 individuals from 1,442 villages in 775 districts from all nine regional states and two city administrations. We developed a geostatistical model of podoconiosis prevalence among adults (individuals aged 15 years or above), by combining environmental factors. The number of people with podoconiosis was then estimated using a gridded map of adult population density for 2015. RESULTS: Podoconiosis is endemic in 345 districts in Ethiopia: 144 in Oromia, 128 in Southern Nations, Nationalities and People's [SNNP], 64 in Amhara, 4 in Benishangul Gumuz, 4 in Tigray and 1 in Somali Regional State. Nationally, our estimates suggest that 1,537,963 adults (95% confidence intervals, 290,923-4,577,031 adults) were living with podoconiosis in 2015. Three regions (SNNP, Oromia and Amhara) contributed 99% of the cases. The highest proportion of individuals with podoconiosis resided in the SNNP (39%), while 32% and 29% of people with podoconiosis resided in Oromia and Amhara Regional States, respectively. Tigray and Benishangul Gumuz Regional States bore lower burdens, and in the remaining regions, podoconiosis was almost non-existent.  Discussion: The estimates of podoconiosis cases presented here based upon the combination of currently available epidemiological data and a robust modelling approach clearly show that podoconiosis is highly endemic in Ethiopia. Given the presence of low cost prevention, and morbidity management and disability prevention services, it is our collective responsibility to scale-up interventions rapidly.

...