Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
medRxiv ; 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37790376

ABSTRACT

Background: Increasing reports suggest that non-falciparum species are an underappreciated cause of malaria in sub-Saharan Africa, but their epidemiology is not well-defined. This is particularly true in regions of high P. falciparum endemicity such as the Democratic Republic of Congo (DRC), where 12% of the world's malaria cases and 13% of deaths occur. Methods and Findings: The cumulative incidence and prevalence of P. malariae and P. ovale spp. infection detected by real-time PCR were estimated among children and adults within a longitudinal study conducted in seven rural, peri-urban, and urban sites from 2015-2017 in Kinshasa Province, DRC. Participants were sampled at biannual household survey visits (asymptomatic) and during routine health facility visits (symptomatic). Participant-level characteristics associated with non-falciparum infections were estimated for single- and mixed-species infections. Among 9,089 samples collected from 1,565 participants over a 3-year period, the incidence of P. malariae and P. ovale spp. infection was 11% (95% CI: 9%-12%) and 7% (95% CI: 5%-8%) by one year, respectively, compared to a 67% (95% CI: 64%-70%) one-year cumulative incidence of P. falciparum infection. Incidence continued to rise in the second year of follow-up, reaching 26% and 15% in school-age children (5-14yo) for P. malariae and P. ovale spp., respectively. Prevalence of P. malariae, P. ovale spp., and P. falciparum infections during household visits were 3% (95% CI: 3%-4%), 1% (95% CI: 1%-2%), and 35% (95% CI: 33%-36%), respectively. Non-falciparum malaria was more prevalent in rural and peri-urban vs. urban sites, in school-age children, and among those with P. falciparum co-infection. A crude association was detected between P. malariae and any anemia in the symptomatic clinic population, although this association did not hold when stratified by anemia severity. No crude associations were detected between non-falciparum infection and fever prevalence. Conclusions: P. falciparum remains the primary driver of malaria morbidity and mortality in the DRC. However, non-falciparum species also pose an infection risk across sites of varying urbanicity and malaria endemicity within Kinshasa, DRC, particularly among children under 15 years of age. As P. falciparum interventions gain traction in high-burden settings like the DRC, continued surveillance and improved understanding of non-falciparum infections are warranted.

2.
Nat Commun ; 14(1): 6618, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37857597

ABSTRACT

Reports suggest non-falciparum species are an underappreciated cause of malaria in sub-Saharan Africa but their epidemiology is ill-defined, particularly in highly malaria-endemic regions. We estimated incidence and prevalence of PCR-confirmed non-falciparum and Plasmodium falciparum malaria infections within a longitudinal study conducted in Kinshasa, Democratic Republic of Congo (DRC) between 2015-2017. Children and adults were sampled at biannual household surveys and routine clinic visits. Among 9,089 samples from 1,565 participants, incidences of P. malariae, P. ovale spp., and P. falciparum infections by 1-year were 7.8% (95% CI: 6.4%-9.1%), 4.8% (95% CI: 3.7%-5.9%) and 57.5% (95% CI: 54.4%-60.5%), respectively. Non-falciparum prevalences were higher in school-age children, rural and peri-urban sites, and P. falciparum co-infections. P. falciparum remains the primary driver of malaria in the DRC, though non-falciparum species also pose an infection risk. As P. falciparum interventions gain traction in high-burden settings, continued surveillance and improved understanding of non-falciparum infections are warranted.


Subject(s)
Malaria, Falciparum , Malaria , Plasmodium ovale , Child , Adult , Humans , Plasmodium ovale/genetics , Plasmodium malariae , Democratic Republic of the Congo/epidemiology , Longitudinal Studies , Malaria, Falciparum/epidemiology , Malaria/epidemiology , Prevalence , Plasmodium falciparum/genetics
3.
PLOS Glob Public Health ; 3(7): e0001375, 2023.
Article in English | MEDLINE | ID: mdl-37494361

ABSTRACT

Malaria programs rely upon a variety of diagnostic assays, including rapid diagnostic tests (RDTs), microscopy, polymerase chain reaction (PCR), and bead-based immunoassays (BBA), to monitor malaria prevalence and support control and elimination efforts. Data comparing these assays are limited, especially from high-burden countries like the Democratic Republic of the Congo (DRC). Using cross-sectional and routine data, we compared diagnostic performance and Plasmodium falciparum prevalence estimates across health areas of varying transmission intensity to illustrate the relevance of assay performance to malaria control programs. Data and samples were collected between March-June 2018 during a cross-sectional household survey across three health areas with low, moderate, and high transmission intensities within Kinshasa Province, DRC. Samples from 1,431 participants were evaluated using RDT, microscopy, PCR, and BBA. P. falciparum parasite prevalence varied between diagnostic methods across all health areas, with the highest prevalence estimates observed in Bu (57.4-72.4% across assays), followed by Kimpoko (32.6-53.2%), and Voix du Peuple (3.1-8.4%). Using latent class analysis to compare these diagnostic methods against an "alloyed gold standard," the most sensitive diagnostic method was BBA in Bu (high prevalence) and Voix du Peuple (low prevalence), while PCR diagnosis was most sensitive in Kimpoko (moderate prevalence). RDTs were consistently the most specific diagnostic method in all health areas. Among 9.0 million people residing in Kinshasa Province in 2018, the estimated P. falciparum prevalence by microscopy, PCR, and BBA were nearly double that of RDT. Comparison of malaria RDT, microscopy, PCR, and BBA results confirmed differences in sensitivity and specificity that varied by endemicity, with PCR and BBA performing best for detecting any P. falciparum infection. Prevalence estimates varied widely depending on assay type for parasite detection. Inherent differences in assay performance should be carefully considered when using community survey and surveillance data to guide policy decisions.

4.
Int J Gen Med ; 5: 603-11, 2012.
Article in English | MEDLINE | ID: mdl-22924007

ABSTRACT

BACKGROUND: The objective of this study was to determine the prevalence of intestinal parasites, with special emphasis on microsporidia and Cryptosporidium, as well as their association with human immunodeficiency virus (HIV) symptoms, risk factors, and other digestive parasites. We also wish to determine the molecular biology definitions of the species and genotypes of microsporidia and Cryptosporidium in HIV patients. METHODS: In this cross-sectional study, carried out in Kinshasa, Democratic Republic of the Congo, stool samples were collected from 242 HIV patients (87 men and 155 women) with referred symptoms and risk factors for opportunistic intestinal parasites. The analysis of feces specimen were performed using Ziehl-Neelsen stainings, real-time polymerase chain reaction (PCR), immunofluorescence indirect monoclonal antibody, nested PCR-restriction fragment length polymorphism, and PCR amplification and sequencing. Odds ratio (OR) and 95% confidence intervals were used to quantify the risk. RESULTS: Of the 242 HIV patients, 7.8%, 0.4%, 5.4%, 0.4%, 2%, 10.6%, and 2.8% had Enterocytozoon bieneusi, Encephalitozoon intestinalis, Cryptosporidium spp., Isospora belli, pathogenic intestinal protozoa, nonpathogenic intestinal protozoa, and helminths, respectively. We found five genotypes of E. bieneusi: two older, NIA1 and D, and three new, KIN1, KIN2, and KIN3. Only 0.4% and 1.6% had Cryptosporidium parvum and Cryptosporidium hominis, respectively. Of the patients, 36.4%, 34.3%, 31%, and 39% had asthenia, diarrhea, a CD4 count of <100 cells/mm(3), and no antiretroviral therapy (ART), respectively. The majority of those with opportunistic intestinal parasites and C. hominis, and all with C. parvum and new E. bieneusi genotypes, had diarrhea, low CD4+ counts of <100 cells/mm(3), and no ART. There was a significant association between Entamoeba coli, Kaposi sarcoma, herpes zoster, chronic diarrhea, and asthenia, and the presence of 28 cases with opportunistic intestinal parasites. Rural areas, public toilets, and exposure to farm pigs were the univariate risk factors present in the 28 cases with opportunistic intestinal parasites. In logistic regression analysis, a CD4 count of <100 cells/mm(3) (OR = 4.60; 95% CI 1.70-12.20; P = 0.002), no ART (OR = 5.00; 95% CI 1.90-13.20; P < 0.001), and exposure to surface water (OR = 2.90; 95% CI 1.01-8.40; P = 0.048) were identified as the significant and independent determinants for the presence of opportunistic intestinal parasites. CONCLUSION: E. bieneusi and Cryptosporidium are becoming more prevalent in Kinshasa, Congo. Based on the findings, we recommend epidemiology surveillance and prevention by means of hygiene, the emphasis of sensitive PCR methods, and treating opportunistic intestinal parasites that may be acquired through fecal-oral transmission, surface water, normal immunity, rural area-based person-person and animal-human infection, and transmission of HIV. Therapy, including ART and treatment with fumagillin, is needed.

SELECTION OF CITATIONS
SEARCH DETAIL
...