Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
BMC Neurosci ; 24(1): 15, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36829110

ABSTRACT

BACKGROUND: Life-long early ART (started before age 2 years), often with periods of treatment interruption, is now the standard of care in pediatric HIV infection. Although cross-sectional studies have investigated HIV-related differences in cortical morphology in the setting of early ART and ART interruption, the long-term impact on cortical developmental trajectories is unclear. This study compares the longitudinal trajectories of cortical thickness and folding (gyrification) from age 5 to 9 years in a subset of children perinatally infected with HIV (CPHIV) from the Children with HIV Early antiRetroviral therapy (CHER) trial to age-matched children without HIV infection. METHODS: 75 CHER participants in follow-up care at FAMCRU (Family Centre for Research with Ubuntu), as well as 66 age-matched controls, received magnetic resonance imaging (MRI) on a 3 T Siemens Allegra at ages 5, 7 and/or 9 years. MR images were processed, and cortical surfaces reconstructed using the FreeSurfer longitudinal processing stream. Vertex-wise linear mixed effects (LME) analyses were performed across the whole brain to compare the means and linear rates of change of cortical thickness and gyrification from 5 to 9 years between CPHIV and controls, as well as to examine effects of ART interruption. RESULTS: Children without HIV demonstrated generalized cortical thinning from 5 to 9 years, with the rate of thinning varying by region, as well as regional age-related gyrification increases. Overall, the means and developmental trajectories of cortical thickness and gyrification were similar in CPHIV. However, at an uncorrected p < 0.005, 6 regions were identified where the cortex of CPHIV was thicker than in uninfected children, namely bilateral insula, left supramarginal, lateral orbitofrontal and superior temporal, and right medial superior frontal regions. Planned ART interruption did not affect development of cortical morphometry. CONCLUSIONS: Although our results suggest that normal development of cortical morphometry between the ages of 5 and 9 years is preserved in CPHIV who started ART early, these findings require further confirmation with longitudinal follow-up through the vulnerable adolescent period.


Subject(s)
HIV Infections , Adolescent , Child , Child, Preschool , Female , Humans , Pregnancy , Brain/pathology , Cerebral Cortex , Cross-Sectional Studies , HIV , HIV Infections/pathology , Magnetic Resonance Imaging/methods
3.
IBRO Neurosci Rep ; 10: 161-170, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34179869

ABSTRACT

ART interruption in children can occur especially in resource-limited settings for reasons including poor adherence, stock-outs, ART intolerance of non-pediatric formulas and pill size, as well as ultimately to test for HIV remission. Although early ART initiation is now standard of care in pediatric HIV management, very little is known on the effect of early ART initiation or subsequent interruption on brain development. This study aimed to investigate the effect of ART interruption on brain cortical thickness (CT) and folding in a subset of children from the Children with HIV Early antiRetroviral therapy (CHER) trial cohort who all started ART before 18 months of age. CHER participants in the neuroimaging follow-up study had magnetic resonance (MRI) scans on a 3T Siemens Allegra brain scanner at age 5.44 ± 0.37 years. MR images were processed using the automated cross-sectional stream in FreeSurfer v6.0 and vertex wise comparisons of CT and local gyrification indices (LGIs) were performed between HIV+ children and HIV- controls, as well as between HIV+ children on interrupted or continuous ART and controls. HIV+ children (n = 46) showed thicker cortex than HIV- children (n = 29) in bilateral frontal and left temporo-insular regions but lower LGIs in left superior and bilateral medial orbitofrontal cortex extending into rostral anterior cingulate. Children on interrupted ART (n = 21) had thicker cortex than HIV- controls in left frontal and right insular regions, but children on continuous treatment (n = 25) showed no difference from controls. Children on both interrupted and continuous ART showed region-specific alterations in LGI relative to controls. Cortical folding appears more sensitive than CT to early life events including early ART and interruption. However, immune health resilience in children can translate to long term preservation of morphometric brain development, especially for those on early and continuous treatment.

4.
Metab Brain Dis ; 33(2): 523-535, 2018 04.
Article in English | MEDLINE | ID: mdl-29209922

ABSTRACT

Even with the increased roll out of combination antiretroviral therapy (cART), paediatric HIV infection is associated with neurodevelopmental delays and neurocognitive deficits that may be accompanied by alterations in brain structure. Few neuroimaging studies have been done in children initiating ART before 2 years of age, and even fewer in children within the critical stage of brain development between 5 and 11 years. We hypothesized that early ART would limit HIV-related brain morphometric deficits at age 7. Study participants were 7-year old HIV-infected (HIV+) children from the Children with HIV Early Antiretroviral Therapy (CHER) trial whose viral loads were supressed at a young age, and age-matched uninfected controls. We used structural magnetic resonance imaging (MRI) and FreeSurfer ( http://www.freesurfer.net/ ) software to investigate effects of HIV and age at ART initiation on cortical thickness, gyrification and regional brain volumes. HIV+ children showed reduced gyrification compared to controls in bilateral medial parietal regions, as well as reduced volumes of the right putamen, left hippocampus, and global white and gray matter and thicker cortex in small lateral occipital region. Earlier ART initiation was associated with lower gyrification and thicker cortex in medial frontal regions. Although early ART appears to preserve cortical thickness and volumes of certain brain structures, HIV infection is nevertheless associated with reduced gyrification in the parietal cortex, and lower putamen and hippocampus volumes. Our results indicate that in early childhood gyrification is more sensitive than cortical thickness to timing of ART initiation. Future work will clarify the implications of these morphometric effects for neuropsychological function.


Subject(s)
Anti-Retroviral Agents/therapeutic use , Cerebral Cortex/pathology , Gray Matter/pathology , HIV Infections/pathology , Hippocampus/pathology , Cerebral Cortex/virology , Child , Child, Preschool , Cognition/physiology , Female , Gray Matter/virology , HIV Infections/drug therapy , HIV Infections/virology , Hippocampus/virology , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Male , Neuroimaging/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...