Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 406
Filter
1.
Nat Commun ; 15(1): 5543, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39019879

ABSTRACT

Meconium, a non-invasive biomaterial reflecting prenatal substance accumulation, could provide valuable insights into neonatal health. However, the comprehensive protein profile of meconium across gestational ages remains unclear. Here, we conducted an extensive proteomic analysis of first meconium from 259 newborns across varied gestational ages to delineate protein composition and elucidate its relevance to neonatal diseases. The first meconium samples were collected, with the majority obtained before feeding, and the mean time for the first meconium passage from the anus was 11.9 ± 9.47 h. Our analysis revealed 5370 host-derived meconium proteins, which varied depending on sex and gestational age. Specifically, meconium from preterm infants exhibited elevated concentrations of proteins associated with the extracellular matrix. Additionally, the protein profiles of meconium also exhibited unique variations depending on both specific diseases, including gastrointestinal diseases, congenital heart diseases, and maternal conditions. Furthermore, we developed a machine learning model to predict gestational ages using meconium proteins. Our model suggests that newborns with gastrointestinal diseases and congenital heart diseases may have immature gastrointestinal systems. These findings highlight the intricate relationship between clinical parameters and meconium protein composition, offering potential for a novel approach to assess neonatal gastrointestinal health.


Subject(s)
Gestational Age , Machine Learning , Meconium , Proteomics , Humans , Meconium/metabolism , Infant, Newborn , Female , Male , Proteomics/methods , Infant, Premature/metabolism , Gastrointestinal Diseases/metabolism , Heart Defects, Congenital/metabolism , Pregnancy , Proteome/metabolism
2.
PLoS One ; 19(7): e0302451, 2024.
Article in English | MEDLINE | ID: mdl-38968258

ABSTRACT

Even with advanced plasmid and viral vectors, attaining copy numbers of multiple genes among different transfected cells is challenging. We achieved one gene expression from a single-copy gene in one cell using a transgene competition system, a combination of the Kazusa cDNA clones and our dual recombinase-mediated cassette exchange system. All 48 nuclear receptors were simultaneously expressed in one dish at the same expression level in HEK293 using this system, and the cell proliferation rate was compared. Significant differences were observed between cells transfected with CMV- or EF1 promoter-driven expression of the 48 nuclear receptors after 8 weeks. The EF1-NR1I2 cell line, which exhibited the highest increase from 2 to 8 weeks, showed 1.13-fold higher proliferation than the EF1-DsRed line. On the other hand, the EF1-NR4A1 cell line, which showed the maximum decrease at 8 weeks, showed 0.88-fold lower proliferation than the EF1-DsRed line. The results were confirmed in both our transgene competition system and long-term growth experiments. Our transgene competition system offers a wide-range, simple, and accurate cell competition method.


Subject(s)
Cell Proliferation , Transgenes , Humans , HEK293 Cells , Cell Proliferation/genetics , Gene Expression/genetics , Gene Dosage , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Transfection , Promoter Regions, Genetic , Genetic Vectors/genetics
3.
PLoS One ; 19(6): e0305812, 2024.
Article in English | MEDLINE | ID: mdl-38913662

ABSTRACT

Retinitis pigmentosa (RP) is the most common inherited retinal dystrophy and a major cause of blindness. RP is caused by several variants of multiple genes, and genetic diagnosis by identifying these variants is important for optimizing treatment and estimating patient prognosis. Next-generation sequencing (NGS), which is currently widely used for diagnosis, is considered useful but is known to have limitations in detecting copy number variations (CNVs). In this study, we re-evaluated CNVs in EYS, the main causative gene of RP, identified via NGS using multiplex ligation-dependent probe amplification (MLPA). CNVs were identified in NGS samples of eight patients. To identify potential CNVs, MLPA was also performed on samples from 42 patients who were undiagnosed by NGS but carried one of the five major pathogenic variants reported in Japanese EYS-RP cases. All suspected CNVs based on NGS data in the eight patients were confirmed via MLPA. CNVs were found in 2 of the 42 NGS-undiagnosed RP cases. Furthermore, results showed that 121 of the 661 patients with RP had EYS as the causative gene, and 8.3% (10/121 patients with EYS-RP) had CNVs. Although NGS using the CNV calling criteria utilized in this study failed to identify CNVs in two cases, no false-positive results were detected. Collectively, these findings suggest that NGS is useful for CNV detection during clinical diagnosis of RP.


Subject(s)
DNA Copy Number Variations , Eye Proteins , High-Throughput Nucleotide Sequencing , Retinitis Pigmentosa , Humans , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/diagnosis , High-Throughput Nucleotide Sequencing/methods , Female , Male , Eye Proteins/genetics , Middle Aged , Adult , Multiplex Polymerase Chain Reaction/methods
4.
Sci Immunol ; 9(95): eade3814, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787963

ABSTRACT

Patients with heart failure (HF) often experience repeated acute decompensation and develop comorbidities such as chronic kidney disease and frailty syndrome. Although this suggests pathological interaction among comorbidities, the mechanisms linking them are poorly understood. Here, we identified alterations in hematopoietic stem cells (HSCs) as a critical driver of recurrent HF and associated comorbidities. Bone marrow transplantation from HF-experienced mice resulted in spontaneous cardiac dysfunction and fibrosis in recipient mice, as well as increased vulnerability to kidney and skeletal muscle insults. HF enhanced the capacity of HSCs to generate proinflammatory macrophages. In HF mice, global chromatin accessibility analysis and single-cell RNA-seq showed that transforming growth factor-ß (TGF-ß) signaling was suppressed in HSCs, which corresponded with repressed sympathetic nervous activity in bone marrow. Transplantation of bone marrow from mice in which TGF-ß signaling was inhibited similarly exacerbated cardiac dysfunction. Collectively, these results suggest that cardiac stress modulates the epigenome of HSCs, which in turn alters their capacity to generate cardiac macrophage subpopulations. This change in HSCs may be a common driver of repeated HF events and comorbidity by serving as a key carrier of "stress memory."


Subject(s)
Heart Failure , Immunity, Innate , Immunologic Memory , Mice, Inbred C57BL , Animals , Heart Failure/immunology , Mice , Male , Multimorbidity , Transforming Growth Factor beta/metabolism , Hematopoietic Stem Cells/immunology , Signal Transduction/immunology , Macrophages/immunology , Trained Immunity
5.
iScience ; 27(6): 109840, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38779479

ABSTRACT

Quantification of cytokine secretion has facilitated advances in the field of immunology, yet the dynamic and varied secretion profiles of individual cells, particularly those obtained from limited human samples, remain obscure. Herein, we introduce a technology for quantitative live-cell imaging of secretion activity (qLCI-S) that enables high-throughput and dual-color monitoring of secretion activity at the single-cell level over several days, followed by transcriptome analysis of individual cells based on their phenotype. The efficacy of qLCI-S was demonstrated by visualizing the characteristic temporal pattern of cytokine secretion of group 2 innate lymphoid cells, which constitute less than 0.01% of human peripheral blood mononuclear cells, and by revealing minor subpopulations with enhanced cytokine production. The underlying mechanism of this feature was linked to the gene expression of stimuli receptors. This technology paves the way for exploring gene expression signatures linked to the spatiotemporal dynamic nature of various secretory functions.

6.
Commun Biol ; 7(1): 622, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783005

ABSTRACT

Recent studies have highlighted the significance of cellular metabolism in the initiation of clonal expansion and effector differentiation of T cells. Upon exposure to antigens, naïve CD4+ T cells undergo metabolic reprogramming to meet their metabolic requirements. However, only few studies have simultaneously evaluated the changes in protein and metabolite levels during T cell differentiation. Our research seeks to fill the gap by conducting a comprehensive analysis of changes in levels of metabolites, including sugars, amino acids, intermediates of the TCA cycle, fatty acids, and lipids. By integrating metabolomics and proteomics data, we discovered that the quantity and composition of cellular lipids underwent significant changes in different effector Th cell subsets. Especially, we found that the sphingolipid biosynthesis pathway was commonly activated in Th1, Th2, Th17, and iTreg cells and that inhibition of this pathway led to the suppression of Th17 and iTreg cells differentiation. Additionally, we discovered that Th17 and iTreg cells enhance glycosphingolipid metabolism, and inhibition of this pathway also results in the suppression of Th17 and iTreg cell generation. These findings demonstrate that the utility of our combined metabolomics and proteomics analysis in furthering the understanding of metabolic transition during Th cell differentiation.


Subject(s)
Cell Differentiation , Metabolomics , Proteomics , Sphingolipids , Sphingolipids/metabolism , Sphingolipids/biosynthesis , Proteomics/methods , Animals , Metabolomics/methods , Mice , Mice, Inbred C57BL
7.
Leukemia ; 38(6): 1256-1265, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38740980

ABSTRACT

Recent advances in in-depth data-independent acquisition proteomic analysis have enabled comprehensive quantitative analysis of >10,000 proteins. Herein, an integrated proteogenomic analysis for inherited bone marrow failure syndrome (IBMFS) was performed to reveal their biological features and to develop a proteomic-based diagnostic assay in the discovery cohort; dyskeratosis congenita (n = 12), Fanconi anemia (n = 11), Diamond-Blackfan anemia (DBA, n = 9), Shwachman-Diamond syndrome (SDS, n = 6), ADH5/ALDH2 deficiency (n = 4), and other IBMFS (n = 18). Unsupervised proteomic clustering identified eight independent clusters (C1-C8), with the ribosomal pathway specifically downregulated in C1 and C2, enriched for DBA and SDS, respectively. Six patients with SDS had significantly decreased SBDS protein expression, with two of these not diagnosed by DNA sequencing alone. Four patients with ADH5/ALDH2 deficiency showed significantly reduced ADH5 protein expression. To perform a large-scale rapid IBMFS screening, targeted proteomic analysis was performed on 417 samples from patients with IBMFS-related hematological disorders (n = 390) and healthy controls (n = 27). SBDS and ADH5 protein expressions were significantly reduced in SDS and ADH5/ALDH2 deficiency, respectively. The clinical application of this first integrated proteogenomic analysis would be useful for the diagnosis and screening of IBMFS, where appropriate clinical screening tests are lacking.


Subject(s)
Bone Marrow Diseases , Bone Marrow Failure Disorders , Proteogenomics , Humans , Bone Marrow Failure Disorders/genetics , Bone Marrow Failure Disorders/pathology , Proteogenomics/methods , Male , Female , Bone Marrow Diseases/genetics , Bone Marrow Diseases/pathology , Child , Adult , Adolescent , Child, Preschool , Anemia, Diamond-Blackfan/genetics , Anemia, Diamond-Blackfan/diagnosis , Young Adult , Fanconi Anemia/genetics , Fanconi Anemia/diagnosis , Proteomics/methods , Infant , Shwachman-Diamond Syndrome/genetics , Dyskeratosis Congenita/genetics , Dyskeratosis Congenita/diagnosis , Dyskeratosis Congenita/pathology
8.
Br J Haematol ; 204(6): 2400-2404, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38650331

ABSTRACT

MYH9-related disorder (MYH9-RD) is characterized by congenital macrothrombocytopenia and granulocyte inclusion bodies. MYH9-RD is often misdiagnosed as chronic immune thrombocytopenia. In this study, we investigated age at definitive diagnosis and indicative thrombocytopenia in 41 patients with MYH9-RD from the congenital thrombocytopenia registry in Japan. Our cohort comprises 54.8% adults over 18 years at confirmed diagnosis. We found a significant difference (p < 0.0001) between the median age at definitive diagnosis of 25.0 years and for indicative thrombocytopenia it was 9.0 years. Our findings strongly suggest diagnostic delay of MYH9-RD in Japan. Our registry system will continue to contribute to this issue.


Subject(s)
Delayed Diagnosis , Myosin Heavy Chains , Thrombocytopenia , Humans , Japan/epidemiology , Adult , Thrombocytopenia/diagnosis , Thrombocytopenia/genetics , Thrombocytopenia/congenital , Male , Female , Child , Adolescent , Myosin Heavy Chains/genetics , Middle Aged , Child, Preschool , Young Adult , Infant , Molecular Motor Proteins/genetics , Registries , Hearing Loss, Sensorineural/diagnosis , Hearing Loss, Sensorineural/genetics , Aged
9.
Int J Mol Sci ; 25(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38612561

ABSTRACT

Two anti-fibrotic drugs, pirfenidone (PFD) and nintedanib (NTD), are currently used to treat idiopathic pulmonary fibrosis (IPF). Peripheral blood mononuclear cells (PBMCs) are immunocompetent cells that could orchestrate cell-cell interactions associated with IPF pathogenesis. We employed RNA sequencing to examine the transcriptome signature in the bulk PBMCs of patients with IPF and the effects of anti-fibrotic drugs on these signatures. Differentially expressed genes (DEGs) between "patients with IPF and healthy controls" and "before and after anti-fibrotic treatment" were analyzed. Enrichment analysis suggested that fatty acid elongation interferes with TGF-ß/Smad signaling and the production of oxidative stress since treatment with NTD upregulates the fatty acid elongation enzymes ELOVL6. Treatment with PFD downregulates COL1A1, which produces wound-healing collagens because activated monocyte-derived macrophages participate in the production of collagen, type I, and alpha 1 during tissue damage. Plasminogen activator inhibitor-1 (PAI-1) regulates wound healing by inhibiting plasmin-mediated matrix metalloproteinase activation, and the inhibition of PAI-1 activity attenuates lung fibrosis. DEG analysis suggested that both the PFD and NTD upregulate SERPINE1, which regulates PAI-1 activity. This study embraces a novel approach by using RNA sequencing to examine PBMCs in IPF, potentially revealing systemic biomarkers or pathways that could be targeted for therapy.


Subject(s)
Idiopathic Pulmonary Fibrosis , Plasminogen Activator Inhibitor 1 , Humans , Leukocytes, Mononuclear , Transcriptome , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/genetics , Fatty Acids
10.
Mol Cell Proteomics ; 23(4): 100745, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447790

ABSTRACT

In recent years, there has been a growing demand for low-input proteomics, particularly in the context of single-cell proteomics (SCP). In this study, we have developed a lauryl maltose neopentyl glycol (LMNG)-assisted sample preparation (LASP) method. This method effectively reduces protein and peptide loss in samples by incorporating LMNG, a surfactant, into the digestion solution and subsequently removing the LMNG simply via reversed phase solid-phase extraction. The advantage of removing LMNG during sample preparation for general proteomic analysis is the prevention of mass spectrometry (MS) contamination. When we applied the LASP method to the low-input SP3 method and on-bead digestion in coimmunoprecipitation-MS, we observed a significant improvement in the recovery of the digested peptides. Furthermore, we have established a simple and easy sample preparation method for SCP based on the LASP method and identified a median of 1175 proteins from a single HEK239F cell using liquid chromatography (LC)-MS/MS with a throughput of 80 samples per day.


Subject(s)
Analytic Sample Preparation Methods , Glycols , Maltose , Proteomics , Single-Cell Analysis , Maltose/chemistry , Glycols/chemistry , Single-Cell Analysis/methods , Proteomics/methods , Humans , HEK293 Cells , Liquid Chromatography-Mass Spectrometry , Immunoprecipitation
11.
Int J Mol Sci ; 25(2)2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38279312

ABSTRACT

Serum and plasma exhibit a broad dynamic range of protein concentrations, posing challenges for proteome analysis. Various technologies have been developed to reduce this complexity, including high-abundance depletion methods utilizing antibody columns, extracellular vesicle enrichment techniques, and trace protein enrichment using nanobead cocktails. Here, we employed lectins to address this, thereby extending the scope of biomarker discovery in serum or plasma using a novel approach. We enriched serum proteins using 37 different lectins and subjected them to LC-MS/MS analysis with data-independent acquisition. Solanum tuberosum lectin (STL) and Lycopersicon esculentum lectin (LEL) enabled the detection of more serum proteins than the other lectins. STL and LEL bind to N-acetylglucosamine oligomers, emphasizing the significance of capturing these oligomer-binding proteins when analyzing serum trace proteins. Combining STL and LEL proved more effective than using them separately, allowing us to identify over 3000 proteins from serum through single-shot proteome analysis. We applied the STL/LEL trace-protein enrichment method to the sera of systemic lupus erythematosus model mice. This revealed differences in >1300 proteins between the systemic lupus erythematosus model and control mouse sera, underscoring the utility of this method for biomarker discovery.


Subject(s)
Lupus Erythematosus, Systemic , Solanum lycopersicum , Solanum tuberosum , Animals , Mice , Proteome , Solanum tuberosum/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Plant Lectins/metabolism , Lectins/metabolism , Blood Proteins , Biomarkers
12.
Int J Mol Sci ; 25(2)2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38255821

ABSTRACT

Pulmonary hypertension (PH) with interstitial lung diseases (ILDs) often causes intractable conditions. CD26/Dipeptidyl peptidase-4 (DPP4) is expressed in lung constituent cells and may be related to the pathogenesis of various respiratory diseases. We aimed to clarify the functional roles of CD26/DPP4 in PH-ILD, paying particular attention to vascular smooth muscle cells (SMCs). Dpp4 knockout (Dpp4KO) and wild type (WT) mice were administered bleomycin (BLM) intraperitoneally to establish a PH-ILD model. The BLM-induced increase in the right ventricular systolic pressure and the right ventricular hypertrophy observed in WT mice were attenuated in Dpp4KO mice. The BLM-induced vascular muscularization in small pulmonary vessels in Dpp4KO mice was milder than that in WT mice. The viability of TGFß-stimulated human pulmonary artery SMCs (hPASMCs) was lowered due to the DPP4 knockdown with small interfering RNA. According to the results of the transcriptome analysis, upregulated genes in hPASMCs with TGFß treatment were related to pulmonary vascular SMC proliferation via the Notch, PI3K-Akt, and NFκB signaling pathways. Additionally, DPP4 knockdown in hPASMCs inhibited the pathways upregulated by TGFß treatment. These results suggest that genetic deficiency of Dpp4 protects against BLM-induced PH-ILD by alleviating vascular remodeling, potentially through the exertion of an antiproliferative effect via inhibition of the TGFß-related pathways in PASMCs.


Subject(s)
Hypertension, Pulmonary , Lung Diseases, Interstitial , Osteochondrodysplasias , Humans , Animals , Mice , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/genetics , Dipeptidyl Peptidase 4/genetics , Phosphatidylinositol 3-Kinases , Lung Diseases, Interstitial/chemically induced , Lung Diseases, Interstitial/genetics , Bleomycin/toxicity , Mice, Knockout , Transforming Growth Factor beta/genetics
13.
J Clin Endocrinol Metab ; 109(3): 750-760, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-37804107

ABSTRACT

CONTEXT: Recently developed long-read sequencing (LRS) technology has been considered an option for CYP21A2 analysis. However, the clinical use of LRS for CYP21A2 analysis is limited. OBJECTIVE: This study's objective is to develop an efficient and low-cost LRS system for CYP21A2 screening. METHODS: A DNA fragment library was prepared in a single polymerase chain reaction (PCR) that covers the entire CYP21A2 gene and all known junctions caused by TNXB gene structural rearrangements, yielding a single 8-kb product of CYP21A2 or CYP21A1P/CYP21A2 chimera. After barcoding, the PCR products were sequenced on a MinION-based platform with Flongle Flow Cell R9.4.1 and R10.4.1. RESULTS: The reference genotypes of 55 patients with 21-hydroxylase deficiency (21OHD) were established using the conventional method with multiplex ligation-dependent probe amplification (MLPA) and nested PCR. LRS using Flongle Flow Cell R9.4.1 yielded consistent results. Additionally, the recently updated LRS "duplex" analysis with Flongle flow cell R10.4.1 was tested to reveal an advantage of accurately sequencing a variant located on the homopolymer region. By introducing a barcode system, the cost was reduced to be comparable to that of conventional analysis. A novel single-nucleotide variation was discovered at the acceptor site of intron 7, c.940-1G > C. We also identified a subtype of the classical chimeric junction CH2, "CH2a," in the region from the latter part of intron 5 to exon 6. CONCLUSION: We successfully established a novel low-cost and highly accurate LRS system for 21OHD genetic analysis. Our study provides insight into the feasibility of LRS for diagnosing 21OHD and other genetic diseases caused by structural rearrangements.


Subject(s)
Adrenal Hyperplasia, Congenital , Steroid 21-Hydroxylase , Humans , Steroid 21-Hydroxylase/genetics , Adrenal Hyperplasia, Congenital/diagnosis , Adrenal Hyperplasia, Congenital/genetics , Genotype , Multiplex Polymerase Chain Reaction , Mutation
14.
Int Immunol ; 36(3): 129-139, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38041796

ABSTRACT

To meet the energetic requirements associated with activation, proliferation, and survival, T cells switch their metabolic signatures from energetically quiescent to activated. However, little is known about the role of metabolic pathway controlling the development of invariant natural killer T (iNKT) cells. In the present study, we found that acetyl-CoA carboxylase 1 (ACC1), a rate-limiting enzyme for the fatty acid biosynthesis pathway, plays an essential role in the development of iNKT cells in the thymus. Mice lacking T-cell specific ACC1 showed a reduced number of iNKT cells with an increased proportion of iNKT cells at immature stages 0 and 1. Furthermore, mixed bone marrow (BM) chimera experiments revealed that T-cell intrinsic ACC1 expression was selectively important for the development of thymic iNKT cells, especially for the differentiation of the NKT1 cell subset. Our single-cell RNA-sequencing (scRNA-seq) data and functional analysis demonstrated that ACC1 is responsible for survival of developing iNKT cells. Thus, these findings highlighted a novel role of ACC1 in controlling thymic iNKT cell development mediated by the control of cell survival.


Subject(s)
Natural Killer T-Cells , Mice , Animals , Thymus Gland , Cell Differentiation , Adipogenesis , Fatty Acids/metabolism , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism
15.
Nucleic Acids Res ; 52(1): 114-124, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38015437

ABSTRACT

Next-generation DNA sequencing (NGS) in short-read mode has recently been used for genetic testing in various clinical settings. NGS data accuracy is crucial in clinical settings, and several reports regarding quality control of NGS data, primarily focusing on establishing NGS sequence read accuracy, have been published thus far. Variant calling is another critical source of NGS errors that remains unexplored at the single-nucleotide level despite its established significance. In this study, we used a machine-learning-based method to establish an exome-wide benchmark of difficult-to-sequence regions at the nucleotide-residue resolution using 10 genome sequence features based on real-world NGS data accumulated in The Genome Aggregation Database (gnomAD) of the human reference genome sequence (GRCh38/hg38). The newly acquired metric, designated the 'UNMET score,' along with additional lines of structural information from the human genome, allowed us to assess the sequencing challenges within the exonic region of interest using conventional short-read NGS. Thus, the UNMET score could provide a basis for addressing potential sequential errors in protein-coding exons of the human reference genome sequence GRCh38/hg38 in clinical sequencing.


Subject(s)
Exome , High-Throughput Nucleotide Sequencing , Sequence Analysis, DNA , Humans , DNA , Exome/genetics , High-Throughput Nucleotide Sequencing/methods , High-Throughput Nucleotide Sequencing/standards , Sequence Analysis, DNA/methods , Sequence Analysis, DNA/standards
16.
FASEB J ; 38(1): e23339, 2024 01.
Article in English | MEDLINE | ID: mdl-38069905

ABSTRACT

Being overweight exacerbates various metabolic diseases, necessitating the identification of target molecules for obesity control. In the current study, we investigated common physiological features related to metabolism in mice with low weight gain: (1) G protein-coupled receptor, family C, group 5, member B-knockout; (2) gastric inhibitory polypeptide receptor-knockout; and (3) Iroquois-related homeobox 3-knockout. Moreover, we explored genes involved in metabolism by analyzing differentially expressed genes (DEGs) between low-weight gain mice and the respective wild-type control mice. The common characteristics of the low-weight gain mice were low inguinal white adipose tissue (iWAT) and liver weight despite similar food intake along with lower blood leptin levels and high energy expenditure. The DEGs of iWAT, epididymal (gonadal) WAT, brown adipose tissue, muscle, liver, hypothalamus, and hippocampus common to these low-weight gain mice were designated as candidate genes associated with metabolism. One such gene tetraspanin 7 (Tspan7) from the iWAT was validated using knockout and overexpressing mouse models. Mice with low Tspan7 expression gained more weight, while those with high Tspan7 expression gained less weight, confirming the involvement of the Tspan7 gene in weight regulation. Collectively, these findings suggest that the candidate gene list generated in this study contains potential target molecules for obesity regulation. Further validation and additional data from low-weight gain mice will aid in understanding the molecular mechanisms associated with obesity.


Subject(s)
Adipose Tissue, Brown , Obesity , Mice , Animals , Obesity/genetics , Obesity/metabolism , Adipose Tissue, Brown/metabolism , Weight Gain/genetics , Adipose Tissue, White/metabolism , Energy Metabolism/genetics , Phenotype , Mice, Inbred C57BL , Diet, High-Fat , Mice, Knockout
17.
J Clin Immunol ; 44(1): 18, 2023 12 22.
Article in English | MEDLINE | ID: mdl-38129603

ABSTRACT

PURPOSE: Inborn errors of the IL-17A/F-responsive pathway lead to chronic mucocutaneous candidiasis (CMC) as a predominant clinical phenotype, without other significant clinical manifestations apart from mucocutaneous staphylococcal diseases. Among inborn errors affecting IL-17-dependent immunity, autosomal recessive (AR) IL-17RC deficiency is a rare disease with only three kindreds described to date. The lack of an in vitro functional evaluation system of IL17RC variants renders its diagnosis difficult. We sought to characterize a 7-year-old Japanese girl with CMC carrying a novel homozygous duplication variant of IL17RC and establish a simple in vitro system to evaluate the impact of this variant. METHODS: Flow cytometry, qPCR, RNA-sequencing, and immunoblotting were conducted, and an IL17RC-knockout cell line was established for functional evaluation. RESULTS: The patient presented with oral and mucocutaneous candidiasis without staphylococcal diseases since the age of 3 months. Genetic analysis showed that the novel duplication variant (Chr3: 9,971,476-9,971,606 dup (+131bp)) involving exon 13 of IL17RC results in a premature stop codon (p.D457Afs*16 or p.D457Afs*17). Our functional evaluation system revealed this duplication to be loss-of-function and enabled discrimination between loss-of-function and neutral IL17RC variants. The lack of response to IL-17A by the patient's SV40-immortalized fibroblasts was restored by introducing WT-IL17RC, suggesting that the genotype identified is responsible for her clinical phenotype. CONCLUSIONS: The clinical and cellular phenotype of the current case of AR IL-17RC deficiency supports a previous report on this rare disorder. Our newly established evaluation system will be useful for the diagnosis of AR IL-17RC deficiency, providing accurate validation of unknown IL17RC variants.


Subject(s)
Candidiasis, Chronic Mucocutaneous , Candidiasis , Female , Humans , Infant , Child , Candidiasis, Chronic Mucocutaneous/diagnosis , Candidiasis, Chronic Mucocutaneous/genetics , Interleukin-17/genetics , Candidiasis/genetics , Fibroblasts/metabolism , Base Sequence
18.
Nat Commun ; 14(1): 6133, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37783685

ABSTRACT

Atopic dermatitis (AD) is a skin disease that is heterogeneous both in terms of clinical manifestations and molecular profiles. It is increasingly recognized that AD is a systemic rather than a local disease and should be assessed in the context of whole-body pathophysiology. Here we show, via integrated RNA-sequencing of skin tissue and peripheral blood mononuclear cell (PBMC) samples along with clinical data from 115 AD patients and 14 matched healthy controls, that specific clinical presentations associate with matching differential molecular signatures. We establish a regression model based on transcriptome modules identified in weighted gene co-expression network analysis to extract molecular features associated with detailed clinical phenotypes of AD. The two main, qualitatively differential skin manifestations of AD, erythema and papulation are distinguished by differential immunological signatures. We further apply the regression model to a longitudinal dataset of 30 AD patients for personalized monitoring, highlighting patient heterogeneity in disease trajectories. The longitudinal features of blood tests and PBMC transcriptome modules identify three patient clusters which are aligned with clinical severity and reflect treatment history. Our approach thus serves as a framework for effective clinical investigation to gain a holistic view on the pathophysiology of complex human diseases.


Subject(s)
Dermatitis, Atopic , Humans , Dermatitis, Atopic/genetics , Transcriptome , Leukocytes, Mononuclear , Skin , Phenotype
19.
Commun Biol ; 6(1): 915, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37673922

ABSTRACT

The decision of whether cells are activated or not is controlled through dynamic intracellular molecular networks. However, the low population of cells during the transition state of activation renders the analysis of the transcriptome of this state technically challenging. To address this issue, we have developed the Time-Dependent Cell-State Selection (TDCSS) technique, which employs live-cell imaging of secretion activity to detect an index of the transition state, followed by the simultaneous recovery of indexed cells for subsequent transcriptome analysis. In this study, we used the TDCSS technique to investigate the transition state of group 2 innate lymphoid cells (ILC2s) activation, which is indexed by the onset of interleukin (IL)-13 secretion. The TDCSS approach allowed us to identify time-dependent genes, including transiently induced genes (TIGs). Our findings of IL4 and MIR155HG as TIGs have shown a regulatory function in ILC2s activation.


Subject(s)
Immunity, Innate , Lymphocytes , Immunity, Innate/genetics , Gene Expression Profiling , Transcriptome
20.
Res Sq ; 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37577484

ABSTRACT

Purpose: Inborn errors of the IL-17A/F-responsive pathway lead to chronic mucocutaneous candidiasis (CMC) as a predominant clinical phenotype, without other significant clinical manifestations apart from mucocutaneous staphylococcal diseases. Amongst inborn errors affecting IL-17-dependent immunity, autosomal recessive (AR) IL-17RC deficiency is a rare disease with only three kindreds described to date. The lack of an in vitro functional evaluation system of IL17RC variants renders its diagnosis difficult. We sought to characterize a seven-year-old Japanese girl with CMC carrying a novel homozygous duplication variant of IL17RC and establish a simple in vitro system to evaluate the impact of this variant. Methods: Flow cytometry, qPCR, RNA-sequencing, and immunoblotting were conducted, and an IL17RC-knockout cell line was established for functional evaluation. Results: The patient presented with oral and mucocutaneous candidiasis without staphylococcal diseases since the age of three months. Genetic analysis showed that the novel duplication variant (Chr3: 9,971,476-9,971,606 dup (+ 131bp)) involving exon 13 of IL17RC results in a premature stop codon (p.D457Afs*16 or p.D457Afs*17). Our functional evaluation system revealed this duplication to be loss-of-function and enabled discrimination between loss-of-function and neutral IL17RC variants. The lack of response to IL-17A by the patient's SV40-immortalized fibroblasts was restored by introducing WT-IL17RC, suggesting that the genotype identified is responsible for her clinical phenotype. Conclusions: The clinical and cellular phenotype of the current case of AR IL-17RC deficiency supports a previous report on this rare disorder. Our newly established evaluation system will be useful for diagnosis of AR IL-17RC deficiency, providing accurate validation of unknown IL17RC variants.

SELECTION OF CITATIONS
SEARCH DETAIL