Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 15: 1311290, 2024.
Article in English | MEDLINE | ID: mdl-38419637

ABSTRACT

Numerous cyanobacteria capable of oxygenic photosynthesis possess multiple large plasmids exceeding 100 kbp in size. These plasmids are believed to have distinct replication and distribution mechanisms, as they coexist within cells without causing incompatibilities between plasmids. However, information on plasmid replication proteins (Rep) in cyanobacteria is limited. Synechocystis sp. PCC 6803 hosts four large plasmids, pSYSM, pSYSX, pSYSA, and pSYSG, but Rep proteins for these plasmids, except for CyRepA1 on pSYSA, are unknown. Using Autonomous Replication sequencing (AR-seq), we identified two potential Rep genes in Synechocystis 6803, slr6031 and slr6090, both located on pSYSX. The corresponding Rep candidates, Slr6031 and Slr6090, share structural similarities with Rep-associated proteins of other bacteria and homologs were also identified in various cyanobacteria. We observed autonomous replication activity for Slr6031 and Slr6090 in Synechococcus elongatus PCC 7942 by fusing their genes with a construct expressing GFP and introducing them via transformation. The slr6031/slr6090-containing plasmids exhibited lower copy numbers and instability in Synechococcus 7942 cells compared to the expression vector pYS. While recombination occurred in the case of slr6090, the engineered plasmid with slr6031 coexisted with plasmids encoding CyRepA1 or Slr6090 in Synechococcus 7942 cells, indicating the compatibility of Slr6031 and Slr6090 with CyRepA1. Based on these results, we designated Slr6031 and Slr6090 as CyRepX1 (Cyanobacterial Rep-related protein encoded on pSYSX) and CyRepX2, respectively, demonstrating that pSYSX is a plasmid with "two Reps in one plasmid." Furthermore, we determined the copy number and stability of plasmids with cyanobacterial Reps in Synechococcus 7942 and Synechocystis 6803 to elucidate their potential applications. The novel properties of CyRepX1 and 2, as revealed by this study, hold promise for the development of innovative genetic engineering tools in cyanobacteria.

2.
Commun Biol ; 7(1): 233, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409320

ABSTRACT

Glycogen serves as a metabolic sink in cyanobacteria. Glycogen deficiency causes the extracellular release of distinctive metabolites such as pyruvate and 2-oxoglutarate upon nitrogen depletion; however, the mechanism has not been fully elucidated. This study aimed to elucidate the mechanism of carbon partitioning in glycogen-deficient cyanobacteria. Extracellular and intracellular metabolites in a glycogen-deficient ΔglgC mutant of Synechococcus elongatus PCC 7942 were comprehensively analyzed. In the presence of a nitrogen source, the ΔglgC mutant released extracellular glutamate rather than pyruvate and 2-oxoglutarate, whereas its intracellular glutamate level was lower than that in the wild-type strain. The de novo synthesis of glutamate increased in the ΔglgC mutant, suggesting that glycogen deficiency enhanced carbon partitioning into glutamate and extracellular excretion through an unidentified transport system. This study proposes a model in which glutamate serves as the prime extracellular metabolic sink alternative to glycogen when nitrogen is available.


Subject(s)
Carbon , Glycogen , Carbon/metabolism , Glycogen/metabolism , Photosynthesis , Glutamic Acid/metabolism , Ketoglutaric Acids/metabolism , Nitrogen/metabolism , Pyruvates
3.
Commun Biol ; 6(1): 1285, 2023 12 25.
Article in English | MEDLINE | ID: mdl-38145988

ABSTRACT

The cyanobacterium Synechococcus elongatus PCC 7942 accumulates alarmone guanosine tetraphosphate (ppGpp) under stress conditions, such as darkness. A previous study observed that artificial ppGpp accumulation under photosynthetic conditions led to the downregulation of genes involved in the nitrogen assimilation system, which is activated by the global nitrogen regulator NtcA, suggesting that ppGpp regulates NtcA activity. However, the details of this mechanism have not been elucidated. Here, we investigate the metabolic responses associated with ppGpp accumulation by heterologous expression of the ppGpp synthetase RelQ. The pool size of 2-oxoglutarate (2-OG), which activates NtcA, is significantly decreased upon ppGpp accumulation. De novo 13C-labeled CO2 assimilation into the Calvin-Benson-Bassham cycle and glycolytic intermediates continues irrespective of ppGpp accumulation, whereas the labeling of 2-OG is significantly decreased under ppGpp accumulation. The low 2-OG levels in the RelQ overexpression cells could be because of the inhibition of metabolic enzymes, including aconitase, which are responsible for 2-OG biosynthesis. We propose a metabolic rearrangement by ppGpp accumulation, which negatively regulates 2-OG levels to maintain carbon and nitrogen balance.


Subject(s)
Guanosine Tetraphosphate , Ketoglutaric Acids , Ketoglutaric Acids/metabolism , Nitrogen/metabolism , Regulon , Homeostasis
4.
Plant Physiol ; 183(4): 1484-1501, 2020 08.
Article in English | MEDLINE | ID: mdl-32518202

ABSTRACT

Metabolism, cell cycle stages, and related transcriptomes in eukaryotic algae change with the diel cycle of light availability. In the unicellular red alga Cyanidioschyzon merolae, the S and M phases occur at night. To examine how diel transcriptomic changes in metabolic pathways are related to the cell cycle and to identify all genes for which mRNA levels change depending on the cell cycle, we examined diel transcriptomic changes in C. merolae In addition, we compared transcriptomic changes between the wild type and transgenic lines, in which the cell cycle was uncoupled from the diel cycle by the depletion of either cyclin-dependent kinase A or retinoblastoma-related protein. Of 4,775 nucleus-encoded genes, the mRNA levels of 1,979 genes exhibited diel transcriptomic changes in the wild type. Of these, the periodic expression patterns of 454 genes were abolished in the transgenic lines, suggesting that the expression of these genes is dependent on cell cycle progression. The periodic expression patterns of most metabolic genes, except those involved in starch degradation and de novo deoxyribonucleotide triphosphate synthesis, were not affected in the transgenic lines, indicating that the cell cycle and transcriptomic changes in most metabolic pathways are independent of the diel cycle. Approximately 40% of the cell-cycle-dependent genes were of unknown function, and approximately 19% of these genes of unknown function are shared with the green alga Chlamydomonas reinhardtii The data set presented in this study will facilitate further studies on the cell cycle and its relationship with metabolism in eukaryotic algae.


Subject(s)
Cell Cycle/physiology , Rhodophyta/metabolism , Transcriptome/genetics , Carbohydrate Metabolism/genetics , Carbohydrate Metabolism/physiology , Cell Cycle/genetics , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Rhodophyta/genetics
5.
Front Microbiol ; 11: 786, 2020.
Article in English | MEDLINE | ID: mdl-32411117

ABSTRACT

Replication of the circular bacterial chromosome is initiated at a unique origin (oriC) in a DnaA-dependent manner in which replication proceeds bidirectionally from oriC to ter. The nucleotide compositions of most bacteria differ between the leading and lagging DNA strands. Thus, the chromosomal DNA sequence typically exhibits an asymmetric GC skew profile. Further, free-living bacteria without genomes encoding dnaA were unknown. Thus, a DnaA-oriC-dependent replication initiation mechanism may be essential for most bacteria. However, most cyanobacterial genomes exhibit irregular GC skew profiles. We previously found that the Synechococcus elongatus chromosome, which exhibits a regular GC skew profile, is replicated in a DnaA-oriC-dependent manner, whereas chromosomes of Synechocystis sp. PCC 6803 and Nostoc sp. PCC 7120, which exhibit an irregular GC skew profile, are replicated from multiple origins in a DnaA-independent manner. Here we investigate the variation in the mechanisms of cyanobacterial chromosome replication. We found that the genomes of certain free-living species do not encode dnaA and such species, including Cyanobacterium aponinum PCC 10605 and Geminocystis sp. NIES-3708, replicate their chromosomes from multiple origins. Synechococcus sp. PCC 7002, which is phylogenetically closely related to dnaA-lacking free-living species as well as to dnaA-encoding but DnaA-oriC-independent Synechocystis sp. PCC 6803, possesses dnaA. In Synechococcus sp. PCC 7002, dnaA was not essential and its chromosomes were replicated from a unique origin in a DnaA-oriC independent manner. Our results also suggest that loss of DnaA-oriC-dependency independently occurred multiple times during cyanobacterial evolution and raises a possibility that the loss of dnaA or loss of DnaA-oriC dependency correlated with an increase in ploidy level.

6.
J Gen Appl Microbiol ; 66(2): 80-84, 2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32092716

ABSTRACT

In bacterial DNA replication, the initiator protein DnaA binds to the multiple DnaA box sequences located at oriC to facilitate the unwinding of duplex DNA strands. The cyanobacterium Synechococcus elongatus PCC 7942, which contains multiple chromosomal copies per cell, has DnaA box (like sequences around the oriC region, which is located upstream of dnaN. We previously observed the binding of DnaA around the oriC region; however, the DNA-binding specificity of DnaA to DnaA box sequences has not been examined. Here, we analyzed the binding specificity of DnaA protein to the DnaA box in S. elongatus by using bio-layer interferometry (BLI), a method for monitoring intermolecular interactions. We observed that recombinant DnaA protein recognized specifically the DnaA box sequence TTTTCCACA in vitro. In addition, DNA binding activity was significantly increased by R328H mutation of DnaA. This is the first report to characterize DnaA binding to the DnaA box sequence in cyanobacteria.


Subject(s)
Bacterial Proteins/genetics , DNA, Bacterial/genetics , DNA-Binding Proteins/genetics , Replication Origin , Synechococcus/genetics , Base Sequence , Binding Sites , DNA Replication , Interferometry , Mutation , Recombinant Proteins/genetics
7.
Plant Direct ; 3(4): e00134, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31245772

ABSTRACT

The unicellular thermoacidophilic red alga Cyanidioschyzon merolae is an emerging model organism of photosynthetic eukaryotes. Its relatively simple genome (16.5 Mbp) with very low-genetic redundancy and its cellular structure possessing one chloroplast, mitochondrion, peroxisome, and other organelles have facilitated studies. In addition, this alga is genetically tractable, and the nuclear and chloroplast genomes can be modified by integration of transgenes via homologous recombination. Recent studies have attempted to clarify the structure and function of the photosystems of this alga. However, it is difficult to obtain photosynthesis-defective mutants for molecular genetic studies because this organism is an obligate autotroph. To overcome this issue in C. merolae, we expressed a plasma membrane sugar transporter, GsSPT1, from Galdieria sulphuraria, which is an evolutionary relative of C. merolae and capable of heterotrophic growth. The heterologously expressed GsSPT1 localized at the plasma membrane. GsSPT1 enabled C. merolae to grow mixotrophically and heterotrophically, in which cells grew in the dark with glucose or in the light with a photosynthetic inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and glucose. When the GsSPT1 transgene multiplied on the C. merolae chromosome via the URA Cm-Gs selection marker, which can multiply itself and its flanking transgene, GsSPT1 protein level increased and the heterotrophic and mixotrophic growth of the transformant accelerated. We also found that GsSPT1 overexpressing C. merolae efficiently formed colonies on solidified medium under light with glucose and DCMU. Thus, GsSPT1 overexpresser will facilitate single colony isolation and analyses of photosynthesis-deficient mutants produced either by random or site-directed mutagenesis. In addition, our results yielded evidence supporting that the presence or absence of plasma membrane sugar transporters is a major cause of difference in trophic properties between C. merolae and G. sulphuraria.

8.
mBio ; 10(2)2019 04 23.
Article in English | MEDLINE | ID: mdl-31015323

ABSTRACT

Homologous chromosome number (ploidy) has diversified among bacteria, archaea, and eukaryotes over evolution. In bacteria, model organisms such as Escherichia coli possess a single chromosome encoding the entire genome during slow growth. In contrast, other bacteria, including cyanobacteria, maintain multiple copies of individual chromosomes (polyploid). Although a correlation between ploidy level and cell size has been observed in bacteria and eukaryotes, it is poorly understood how replication of multicopy chromosomes is regulated and how ploidy level is adjusted to cell size. In addition, the advantages conferred by polyploidy are largely unknown. Here we show that only one or a few multicopy chromosomes are replicated at once in the cyanobacterium Synechococcus elongatus and that this restriction depends on regulation of DnaA activity. Inhibiting the DnaA intrinsic ATPase activity in S. elongatus increased the number of replicating chromosomes and chromosome number per cell but did not affect cell growth. In contrast, when cell growth rate was increased or decreased, DnaA level, DnaA activity, and the number of replicating chromosomes also increased or decreased in parallel, resulting in nearly constant chromosome copy number per unit of cell volume at constant temperature. When chromosome copy number was increased by inhibition of DnaA ATPase activity or reduced culture temperature, cells exhibited greater resistance to UV light. Thus, it is suggested that the stepwise replication of the genome enables cyanobacteria to maintain nearly constant gene copy number per unit of cell volume and that multicopy chromosomes function as backup genetic information to compensate for genomic damage.IMPORTANCE Polyploidy has evolved many times across the kingdom of life. The relationship between cell growth and chromosome replication in bacteria has been studied extensively in monoploid model organisms such as Escherichiacoli but not in polyploid organisms. Our study of the polyploid cyanobacterium Synechococcus elongatus demonstrates that replicating chromosome number is restricted and regulated by DnaA to maintain a relatively stable gene copy number/cell volume ratio during cell growth. In addition, our results suggest that polyploidy confers resistance to UV, which damages DNA. This compensatory polyploidy is likely necessitated by photosynthesis, which requires sunlight and generates damaging reactive oxygen species, and may also explain how polyploid bacteria can adapt to extreme environments with high risk of DNA damage.


Subject(s)
Chromosomes/metabolism , DNA Replication , Ploidies , Synechococcus/growth & development , Synechococcus/genetics , Bacterial Proteins/metabolism , DNA-Binding Proteins/metabolism , Gene Dosage , Synechococcus/enzymology
9.
Bio Protoc ; 8(15): e2958, 2018 Aug 05.
Article in English | MEDLINE | ID: mdl-34395766

ABSTRACT

Cyanobacteria are prokaryotic organisms that carry out oxygenic photosynthesis. The fresh water cyanobacterium Synechococcus elongatus PCC 7942 is a model organism for the study of photosynthesis and gene regulation, and for biotechnological applications. Besides several freshwater cyanobacteria, S. elongatus 7942 also contains multiple chromosomal copies per cell at all stages of its cell cycle. Here, we describe a method for the direct visualization of multicopy chromosomes in S. elongatus 7942 by fluorescence in situ hybridization (FISH).

10.
Microbiology (Reading) ; 164(1): 45-56, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29165230

ABSTRACT

While many bacteria, such as Escherichia coli and Bacillus subtilis, harbour a single-copy chromosome, freshwater cyanobacteria have multiple copies of each chromosome per cell. Although it has been reported that multi-copy chromosomes are evenly distributed along the major axis of the cell in cyanobacterium Synechococcus elongatus PCC 7942, the distribution mechanism of these chromosomes remains unclear. In S. elongatus, the carboxysome, a metabolic microcompartment for carbon fixation that is distributed in a similar manner to the multi-copy chromosomes, is regulated by ParA-like protein (hereafter ParA). To elucidate the role of ParA in the distribution of multi-copy chromosomes, we constructed and analysed ParA disruptant and overexpressing strains of S. elongatus. Our fluorescence in situ hybridization assay revealed that the parA disruptants displayed an aberrant distribution of their multi-copy chromosomes. In the parA disruptant the multiple origin and terminus foci, corresponding to the intracellular position of each chromosomal region, were aggregated, which was compensated by the expression of exogenous ParA from other genomic loci. The parA disruptant is sensitive to UV-C compared to the WT strain. Additionally, giant cells appeared under ParA overexpression at the late stage of growth indicating that excess ParA indirectly inhibits cell division. Screening of the ParA-interacting proteins by yeast two-hybrid analysis revealed four candidates that are involved in DNA repair and cell membrane biogenesis. These results suggest that ParA is involved in the pleiotropic cellular functions with these proteins, while parA is dispensable for cell viability in S. elongatus.


Subject(s)
Bacterial Proteins/metabolism , Chromosomes, Bacterial , Synechococcus/genetics , Bacterial Proteins/genetics , Carrier Proteins , Chromosome Segregation/genetics , Chromosomes, Bacterial/genetics , Gene Deletion , Gene Expression , Genes, Bacterial , Genetic Pleiotropy , Microbial Viability/radiation effects , Protein Binding , Synechococcus/growth & development , Synechococcus/metabolism , Two-Hybrid System Techniques , Ultraviolet Rays/adverse effects
11.
Proc Natl Acad Sci U S A ; 114(39): E8304-E8313, 2017 09 26.
Article in English | MEDLINE | ID: mdl-28893987

ABSTRACT

Some microalgae are adapted to extremely acidic environments in which toxic metals are present at high levels. However, little is known about how acidophilic algae evolved from their respective neutrophilic ancestors by adapting to particular acidic environments. To gain insights into this issue, we determined the draft genome sequence of the acidophilic green alga Chlamydomonas eustigma and performed comparative genome and transcriptome analyses between Ceustigma and its neutrophilic relative Chlamydomonas reinhardtii The results revealed the following features in Ceustigma that probably contributed to the adaptation to an acidic environment. Genes encoding heat-shock proteins and plasma membrane H+-ATPase are highly expressed in Ceustigma This species has also lost fermentation pathways that acidify the cytosol and has acquired an energy shuttle and buffering system and arsenic detoxification genes through horizontal gene transfer. Moreover, the arsenic detoxification genes have been multiplied in the genome. These features have also been found in other acidophilic green and red algae, suggesting the existence of common mechanisms in the adaptation to acidic environments.


Subject(s)
Adaptation, Physiological/genetics , Chlamydomonas reinhardtii/genetics , Genome, Plant , Plant Proteins/genetics , Chlamydomonas reinhardtii/metabolism , Hydrogen-Ion Concentration , Plant Proteins/metabolism
12.
Front Plant Sci ; 8: 343, 2017.
Article in English | MEDLINE | ID: mdl-28352279

ABSTRACT

The unicellular red alga Cyanidioschyzon merolae possesses a simple cellular architecture that consists of one mitochondrion, one chloroplast, one peroxisome, one Golgi apparatus, and several lysosomes. The nuclear genome content is also simple, with very little genetic redundancy (16.5 Mbp, 4,775 genes). In addition, molecular genetic tools such as gene targeting and inducible gene expression systems have been recently developed. These cytological features and genetic tractability have facilitated various omics analyses. However, only a single transformation selection marker URA has been made available and thus the application of genetic modification has been limited. Here, we report the development of a nuclear targeting method by using chloramphenicol and the chloramphenicol acetyltransferase (CAT) gene. In addition, we found that at least 200-bp homologous arms are required and 500-bp arms are sufficient for a targeted single-copy insertion of the CAT selection marker into the nuclear genome. By means of a combination of the URA and CAT transformation systems, we succeeded in producing a C. merolae strain that expresses HA-cyclin 1 and FLAG-CDKA from the chromosomal CYC1 and CDKA loci, respectively. These methods of multiple nuclear targeting will facilitate genetic manipulation of C. merolae.

13.
Plant Cell Physiol ; 58(2): 279-286, 2017 02 01.
Article in English | MEDLINE | ID: mdl-27837093

ABSTRACT

Cyanobacteria exhibit light-dependent cell growth since most of their cellular energy is obtained by photosynthesis. In Synechococcus elongatus PCC 7942, one of the model cyanobacteria, DNA replication depends on photosynthetic electron transport. However, the critical signal for the regulatory mechanism of DNA replication has not been identified. In addition, conservation of this regulatory mechanism has not been investigated among cyanobacteria. To understand this regulatory signal and its dependence on light, we examined the regulation of DNA replication under both light and dark conditions among three model cyanobacteria, S. elongatus PCC 7942, Synechocystis sp. PCC 6803 and Anabaena sp. PCC 7120. Interestingly, DNA replication activity in Synechocystis and Anabaena was retained when cells were transferred to the dark, although it was drastically decreased in S. elongatus. Glycogen metabolism and respiration were higher in Synechocystis and Anabaena than in S. elongatus in the dark. Moreover, DNA replication activity in Synechocystis and Anabaena was reduced to the same level as that in S. elongatus by inhibition of respiratory electron transport after transfer to the dark. These results demonstrate that there is disparity in DNA replication occurring in the dark among cyanobacteria, which is caused by the difference in activity of respiratory electron transport.


Subject(s)
Cyanobacteria/metabolism , Cyanobacteria/genetics , DNA Replication/genetics , DNA Replication/physiology , Electron Transport/genetics , Electron Transport/physiology , Light , Photosynthesis/genetics , Photosynthesis/physiology
14.
J Gen Appl Microbiol ; 62(3): 154-9, 2016 Jul 14.
Article in English | MEDLINE | ID: mdl-27250662

ABSTRACT

Cyanobacteria are photosynthetic microorganisms that serve as experimental model organisms for the study of photosynthesis, environmental stress responses, and the production of biofuels. Genetic tools for bioengineering have been developed as a result of such studies. However, there is still room for improvement for the tight control of experimental protein expression in these microorganisms. Here, we describe an expression system controlled by a theophylline-responsive riboswitch that we have constructed in the cyanobacterium Synechocystis sp. PCC 6803. We demonstrate that, in response to different theophylline concentrations, this riboswitch can tightly control green fluorescence protein expression in Synechocystis. Thus, this system is useful as a tool for genetic engineering and the synthetic biology of cyanobacteria.


Subject(s)
Gene Expression Regulation, Bacterial , Riboswitch , Synechocystis/genetics , Escherichia coli/genetics , Genetic Engineering , Green Fluorescent Proteins/genetics , Photosynthesis , Synechocystis/drug effects , Synechocystis/metabolism , Synechocystis/ultrastructure , Synthetic Biology , Theophylline/pharmacology
15.
ISME J ; 10(5): 1113-21, 2016 May.
Article in English | MEDLINE | ID: mdl-26517699

ABSTRACT

Regulating DNA replication is essential for all living cells. The DNA replication initiation factor DnaA is highly conserved in prokaryotes and is required for accurate initiation of chromosomal replication at oriC. DnaA-independent free-living bacteria have not been identified. The dnaA gene is absent in plastids and some symbiotic bacteria, although it is not known when or how DnaA-independent mechanisms were acquired. Here, we show that the degree of dependency of DNA replication on DnaA varies among cyanobacterial species. Deletion of the dnaA gene in Synechococcus elongatus PCC 7942 shifted DNA replication from oriC to a different site as a result of the integration of an episomal plasmid. Moreover, viability during the stationary phase was higher in dnaA disruptants than in wild-type cells. Deletion of dnaA did not affect DNA replication or cell growth in Synechocystis sp. PCC 6803 or Anabaena sp. PCC 7120, indicating that functional dependency on DnaA was already lost in some nonsymbiotic cyanobacterial lineages during diversification. Therefore, we proposed that cyanobacteria acquired DnaA-independent replication mechanisms before symbiosis and such an ancestral cyanobacterium was the sole primary endosymbiont to form a plastid precursor.


Subject(s)
Bacterial Proteins/metabolism , Biological Evolution , Cyanobacteria/genetics , Cyanobacteria/metabolism , DNA Replication , DNA-Binding Proteins/metabolism , Fresh Water/microbiology , Cyanobacteria/classification , Synechococcus/genetics , Synechococcus/metabolism , Synechocystis/genetics , Synechocystis/metabolism
16.
PLoS One ; 10(9): e0136800, 2015.
Article in English | MEDLINE | ID: mdl-26331851

ABSTRACT

Unlike bacteria such as Escherichia coli and Bacillus subtilis, several species of freshwater cyanobacteria are known to contain multiple chromosomal copies per cell, at all stages of their cell cycle. We have characterized the replication of multi-copy chromosomes in the cyanobacterium Synechococcus elongatus PCC 7942 (hereafter Synechococcus 7942). In Synechococcus 7942, the replication of multi-copy chromosome is asynchronous, not only among cells but also among multi-copy chromosomes. This suggests that DNA replication is not tightly coupled to cell division in Synechococcus 7942. To address this hypothesis, we analysed the relationship between DNA replication and cell doubling at various growth phases of Synechococcus 7942 cell culture. Three distinct growth phases were characterised in Synechococcus 7942 batch culture: lag phase, exponential phase, and arithmetic (linear) phase. The chromosomal copy number was significantly higher during the lag phase than during the exponential and linear phases. Likewise, DNA replication activity was higher in the lag phase cells than in the exponential and linear phase cells, and the lag phase cells were more sensitive to nalidixic acid, a DNA gyrase inhibitor, than cells in other growth phases. To elucidate physiological differences in Synechococcus 7942 during the lag phase, we analysed the metabolome at each growth phase. In addition, we assessed the accumulation of central carbon metabolites, amino acids, and DNA precursors at each phase. The results of these analyses suggest that Synechococcus 7942 cells prepare for cell division during the lag phase by initiating intensive chromosomal DNA replication and accumulating metabolites necessary for the subsequent cell division and elongation steps that occur during the exponential growth and linear phases.


Subject(s)
DNA Replication , Synechococcus/growth & development , Synechococcus/genetics , Chromosomes, Bacterial/genetics , DNA, Bacterial/genetics , Metabolome , Synechococcus/cytology , Synechococcus/metabolism
17.
FEMS Microbiol Lett ; 344(2): 138-44, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23621483

ABSTRACT

The freshwater cyanobacterium Synechococcus elongatus PCC 7942 exhibits light-dependent growth. Although it has been reported that DNA replication also depends on light irradiation in S. elongatus 7942, the involvement of the light in the regulation of DNA replication remains unclear. To elucidate the regulatory pathway of DNA replication by light, we studied the effect of several inhibitors, including two electron transport inhibitors, 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), on DNA replication in S. elongatus 7942. DCMU inhibited only DNA replication initiation, whereas DBMIB blocked both the initiation and progression of DNA replication. These results suggest that DNA replication depends on the photosynthetic electron transport activity and initiation and progression of DNA replication are regulated in different ways.


Subject(s)
DNA Replication , Photosynthesis , Synechococcus/genetics , Synechococcus/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA Replication/radiation effects , Electron Transport , Gene Expression Regulation, Bacterial/radiation effects , Light , Synechococcus/radiation effects
18.
Mol Microbiol ; 83(4): 856-65, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22403820

ABSTRACT

While bacteria such as Escherichia coli and Bacillus subtilis harbour a single circular chromosome, some freshwater cyanobacteria have multiple chromosomes p er cell. The detailed mechanism(s) of cyanobacterialreplication remains unclear. To elucidate the replication origin (ori ), form and synchrony of the multi-copy genome in freshwater cyanobacteria Synechococcus elongatus PCC 7942 we constructed strain S. 7942TK that can incorporate 5-bromo-2'- deoxyuridine (BrdU) into genomic DNA and analysed its de novo DNA synthesis. The uptake of BrdU was blocked under dark and resumed after transfer of the culture to light conditions. Mapping analysis of nascent DNA fragments using a next-generation sequencer indicated that replication starts bidirectionally from a single ori, which locates in the upstream region of the dnaN gene. Quantitative analysis of BrdU-labelled DNA and whole-genome sequence analysis indicated that the peak timing of replication precedes that of cell division and that replication is initiated asynchronously not only among cell populations but also among the multi-copy chromosomes. Our findings suggest that replication initiation is regulated less stringently in S. 7942 than in E. coli and B. subtilis.


Subject(s)
Chromosomes, Bacterial/metabolism , DNA Replication Timing , Light , Synechococcus/physiology , Bacterial Proteins/genetics , Bromodeoxyuridine/metabolism , DNA, Bacterial/biosynthesis , DNA-Directed DNA Polymerase/genetics , Darkness , Replication Origin , Sequence Analysis, DNA , Staining and Labeling/methods , Synechococcus/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL