Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 147
1.
Antibiotics (Basel) ; 13(5)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38786108

Captive birds of prey are often used for pest control in urban areas, while also participating in falconry exhibitions. Traveling across the country, these birds may represent a public health concern as they can host pathogenic and zoonotic agents and share the same environment as humans and synanthropic species. In this work, Escherichia coli from the cloacal samples of 27 captive birds of prey were characterized to determine their pathogenic potential. Isolates were clustered through ERIC-PCR fingerprinting, and the phylogenetic groups were assessed using a quadruplex PCR method. Their virulence and resistance profile against nine antibiotics were determined, as well as the isolates' ability to produce extended-spectrum ß-lactamases (ESBLs). The 84 original isolates were grouped into 33 clonal types, and it was observed that more than half of the studied isolates belonged to groups D and B2. Most isolates presented gelatinase activity (88%), almost half were able to produce biofilm (45%), and some were able to produce α-hemolysin (18%). The isolates presented high resistance rates towards piperacillin (42%), tetracycline (33%), and doxycycline (30%), and 6% of the isolates were able to produce ESBLs. The results confirm the importance of these birds as reservoirs of virulence and resistance determinants that can be disseminated between wildlife and humans, stressing the need for more studies focusing on these animals.

3.
J Wildl Dis ; 2024 May 23.
Article En | MEDLINE | ID: mdl-38777337

Freshwater fish species are experiencing the highest decline among vertebrates in this century. Although a great effort has been made to identify and tackle threats to the conservation of this taxa, several knowledge gaps still exist particularly for noncommercial endangered species, including considerations regarding fish health status. These species face deteriorating environmental conditions in their natural habitats that may lead to stress and increased risk for infectious disease outbreaks. Establishing health surveillance is crucial to identify and predict physiologic disruption in fish populations. Additionally, information retrieved may be used to direct targeted efforts to contribute to improving the conservation status of these species. We used threatened Iberian leuciscids as a case study to discuss the current knowledge regarding their health surveillance and to suggest recommendations for the establishment of practical health assessments that can benefit conservation plans for these species and be implemented in threatened or endangered freshwater fish species plans globally.

4.
Sci Rep ; 14(1): 11352, 2024 05 18.
Article En | MEDLINE | ID: mdl-38762506

The biological control of gastrointestinal (GI) parasites using predatory fungi has been recently proposed as an accurate and sustainable approach in birds. The current study aimed to assess for the first time the efficacy of using the native ovicidal fungus Mucor circinelloides (FMV-FR1) in reducing coccidia parasitism in peacocks. For this purpose, an in vivo trial was designed in the resident peacock collection (n = 58 birds) of the São Jorge Castle, at Lisbon, Portugal. These animals presented an initial severe infection by coccidia of the genus Eimeria (20106 ± 8034 oocysts per gram of feces, OPG), and thus received commercial feed enriched with a M. circinelloides suspension (1.01 × 108 spores/kg feed), thrice-weekly. Fresh feces were collected every 15 days to calculate the coccidia shedding, using the Mini-FLOTAC technique. The same bird flock served simultaneously as control (t0 days) and test groups (t15-t90 days). The average Eimeria sp. shedding in peacocks decreased up to 92% following fungal administrations, with significant reduction efficacies of 78% (p = 0.004) and 92% (p = 0.012) after 45 and 60 days, respectively. Results from this study suggest that the administration of M. circinelloides spores to birds is an accurate solution to reduce their coccidia parasitism.


Coccidiosis , Feces , Mucor , Animals , Coccidiosis/veterinary , Coccidiosis/parasitology , Feces/parasitology , Feces/microbiology , Eimeria , Coccidia , Poultry Diseases/parasitology , Poultry Diseases/microbiology , Poultry Diseases/prevention & control
5.
Sci Rep ; 14(1): 8039, 2024 04 05.
Article En | MEDLINE | ID: mdl-38580725

This study aimed to characterize the antimicrobial resistance (AMR) and virulence profiles of 67 Escherichia coli isolates obtained from faecal samples of 77 wild mammals from 19 different species, admitted in two rescue and rehabilitation centers in Costa Rica. It was possible to classify 48% (n = 32) of the isolates as multidrug-resistant, and while the highest resistance levels were found towards commonly prescribed antimicrobials, resistance to fluoroquinolones and third generation cephalosporins were also observed. Isolates obtained from samples of rehabilitated animals or animals treated with antibiotics were found to have significantly higher AMR levels, with the former also having a significant association with a multidrug-resistance profile. Additionally, the isolates displayed the capacity to produce α-haemolysins (n = 64, 96%), biofilms (n = 51, 76%) and protease (n = 21, 31%). Our results showed that AMR might be a widespread phenomenon within Costa Rican wildlife and that both free-ranging and rehabilitated wild mammals are potential carriers of bacteria with important resistance and virulence profiles. These results highlight the need to study potential sources of resistance determinants to wildlife, and to determine if wild animals can disseminate resistant bacteria in the environment, potentially posing a significant threat to public health and hindering the implementation of a "One Health" approach.


Escherichia coli Infections , Escherichia coli , Animals , Costa Rica , Public Health , Drug Resistance, Bacterial , Mammals , Animals, Wild/microbiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Anti-Bacterial Agents/pharmacology , Bacteria , Rehabilitation Centers
6.
Future Microbiol ; 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38661710

Antibiotics' action, once a 'magic bullet', is now hindered by widespread microbial resistance, creating a global antimicrobial resistance (AMR) crisis. A primary driver of AMR is the selective pressure from antimicrobial use. Between 2000 and 2015, antibiotic consumption increased by 65%, reaching 34.8 billion tons, 73% of which was used in animals. In the dairy cattle sector, antibiotics are crucial for treating diseases like mastitis, posing risks to humans, animals and potentially leading to environmental contamination. To address AMR, strategies like selective dry cow therapy, alternative treatments (nanoparticles, phages) and waste management innovations are emerging. However, most solutions are in development, emphasizing the urgent need for further research to tackle AMR in dairy farms.


Antibiotics are becoming less effective at fighting infections because of antimicrobial resistance (AMR). This phenomenon is mainly caused by the abuse and misuse of antibiotics in both human and veterinary medicine. In the dairy cow industry, the use of antibiotics to treat diseases is a big concern. Ways to tackle this include the promotion of the responsible use of antibiotics, the development of alternative treatments and the discovery of better methods to deal with animal waste. However, much of these are still in development.

7.
Animals (Basel) ; 14(6)2024 Mar 11.
Article En | MEDLINE | ID: mdl-38539953

Falconry has been practiced for thousands of years and is nowadays frequently employed in activities such as pest control, hunting, falcon racing, and environmental education. Antimicrobial resistance levels have risen in the past years, constituting an emerging global problem with a direct impact on public health. Besides both topics being studied on their own, information on the role of captive birds of prey in the potential dissemination of virulence factors and antimicrobial resistance determinants of bacterial origin is scarce. Multidrug-resistant bacteria, including some extended-spectrum ß-lactamase producers, have already been found in several captive birds of prey. Most of the virulence factors found in captive raptors' bacteria were related to adherence and invasion abilities, toxin production, and flagella. These birds may acquire these bacteria through contaminated raw food and the exchange of animals between keepers and zoological facilities. More studies are required to confirm the role of captive birds of prey in disseminating resistant bacteria and on the routes of interaction between synanthropic species and humans.

8.
Sci China Life Sci ; 67(6): 1292-1301, 2024 Jun.
Article En | MEDLINE | ID: mdl-38489008

Antimicrobial resistance (AMR) poses a critical threat to global health and development, with environmental factors-particularly in urban areas-contributing significantly to the spread of antibiotic resistance genes (ARGs). However, most research to date has been conducted at a local level, leaving significant gaps in our understanding of the global status of antibiotic resistance in urban environments. To address this issue, we thoroughly analyzed a total of 86,213 ARGs detected within 4,728 metagenome samples, which were collected by the MetaSUB International Consortium involving diverse urban environments in 60 cities of 27 countries, utilizing a deep-learning based methodology. Our findings demonstrated the strong geographical specificity of urban environmental resistome, and their correlation with various local socioeconomic and medical conditions. We also identified distinctive evolutionary patterns of ARG-related biosynthetic gene clusters (BGCs) across different countries, and discovered that the urban environment represents a rich source of novel antibiotics. Our study provides a comprehensive overview of the global urban environmental resistome, and fills a significant gap in our knowledge of large-scale urban antibiotic resistome analysis.


Anti-Bacterial Agents , Cities , Humans , Anti-Bacterial Agents/pharmacology , Socioeconomic Factors , Metagenome/genetics , Drug Resistance, Bacterial/genetics , Drug Resistance, Microbial/genetics , Genes, Bacterial , Bacteria/genetics , Bacteria/drug effects , Bacteria/classification , Multigene Family , Global Health
9.
Microbiol Spectr ; 12(5): e0407823, 2024 May 02.
Article En | MEDLINE | ID: mdl-38534121

Parasiticide fungi are considered an accurate, sustainable, and safe solution for the biocontrol of animal gastrointestinal (GI) parasites. This research provides an initial characterization of the virulence of the native parasiticide fungus Mucor circinelloides (FMV-FR1) and an assessment of its impact on birds' gut microbes. The genome of this fungus was sequenced to identify the genes coding for virulence factors. Also, this fungus was checked for the phenotypic expression of proteinase, lecithinase, DNase, gelatinase, hemolysin, and biofilm production. Finally, an in vivo trial was developed based on feeding M. circinelloides spores to laying hens and peacocks three times a week. Bird feces were collected for 3 months, with total genomic DNA being extracted and subjected to long-read 16S and 25S-28S sequencing. Genes coding for an iron permease (FTR1), iron receptors (FOB1 and FOB2), ADP-ribosylation factors (ARFs) (ARF2 and ARF6), and a GTPase (CDC42) were identified in this M. circinelloides genome. Also, this fungus was positive only for lecithinase activity. The field trial revealed a fecal microbiome dominated by Firmicutes and Proteobacteria in laying hens, and Firmicutes and Bacteroidetes in peacocks, whereas the fecal mycobiome of both bird species was mainly composed of Ascomycetes and Basidiomycetes fungi. Bacterial and fungal alpha-diversities did not differ between sampling time points after M. circinelloides administrations (P = 0.62 and P = 0.15, respectively). Although findings from this research suggest the lack of virulence of this M. circinelloides parasiticide isolate, more complementary in vitro and in vivo research is needed to conclude about the safety of its administration to birds, aiming at controlling their GI parasites.IMPORTANCEA previous study revealed that the native Mucor circinelloides isolate (FMV-FR1) can develop parasiticide activity toward coccidia oocysts, one of the most pathogenic GI parasites in birds. However, ensuring its safety for birds is of utmost importance, namely by studying its virulence profile and potential effect on commensal gut microbes. This initial study revealed that although this M. circinelloides isolate had genes coding for four types of virulence factors-iron permease, iron receptors, ADP-ribosylation factors, and GTPase-and only expressed phenotypically the enzyme lecithinase, the administration of its spores to laying hens and peacocks did not interfere with the abundances and diversities of their gut commensal bacteria and fungi. Although overall results suggest the lack of virulence of this M. circinelloides isolate, more complementary research is needed to conclude about the safety of its administration to birds in the scope of parasite biocontrol programs.


Chickens , Gastrointestinal Microbiome , Mucor , Virulence Factors , Mucor/genetics , Mucor/pathogenicity , Animals , Chickens/microbiology , Virulence , Virulence Factors/genetics , Virulence Factors/metabolism , Feces/microbiology , Female
10.
BMC Vet Res ; 20(1): 63, 2024 Feb 23.
Article En | MEDLINE | ID: mdl-38388939

BACKGROUND: The combined application of predatory fungi and antiparasitic drugs is a sustainable approach for the integrated control of animal gastrointestinal (GI) parasites. However, literature addressing the possible interference of antiparasitic drugs on the performance of these fungi is still scarce. This research aimed to assess the in vitro susceptibility of six native coccidicidal fungi isolates of the species Mucor circinelloides and one Mucor lusitanicus isolate to several antiparasitic drugs commonly used to treat GI parasites' infections in birds, namely anthelminthics such as Albendazole, Fenbendazole, Levamisole and Ivermectin, and anticoccidials such as Lasalocid, Amprolium and Toltrazuril (drug concentrations of 0.0078-4 µg/mL), using 96-well microplates filled with RPMI 1640 medium, and also on Sabouraud Agar (SA). RESULTS: This research revealed that the exposition of all Mucor isolates to the tested anthelminthic and anticoccidial drug concentrations did not inhibit their growth. Fungal growth was recorded in RPMI medium, after 48 h of drug exposure, as well as on SA medium after exposure to the maximum drug concentration. CONCLUSIONS: Preliminary findings from this research suggest the potential compatibility of these Mucor isolates with antiparasitic drugs for the integrated control of avian intestinal parasites. However, further in vitro and in vivo studies are needed to confirm this hypothesis.


Antiparasitic Agents , Mucor , Animals , Antiparasitic Agents/pharmacology , Ivermectin/pharmacology , Albendazole
11.
Article En | MEDLINE | ID: mdl-37951835

Autologous hematopoietic stem cell transplantation (Auto-HSCT) is widely used in the treatment of patients with hematological neoplasms. Since these cells circulate in small quantities in the periphery, the use of regimens that promote their mobilization is essential. In this study, we retrospectively evaluated the efficacy and safety of using intermediate doses of cytarabine (1.6 g/m²) + filgrastim (10 mcg/kg/day) in the mobilization of stem cells in 157 patients treated by the Unified Health System at the Hematology and Bone Marrow Transplant Service of the Hospital Real Português de Beneficência, in Recife, Pernambuco. The sample included patients with multiple myeloma (MM) (58.6 %), lymphomas (29.9 %), and other neoplasms (11.5 %). The target of 2.0 × 10 6 CD34+ cells/kg was achieved by 148 (94.3 %) patients, in most cases (84.1 %) in a single apheresis and the median number of cells collected was 9.5 × 10 6 CD34+ cells/kg. No episode of febrile neutropenia was observed, however, 79 patients (50.3 %) required platelet transfusion (no cases attributed to bleeding). The median engraftment time was 11 days. Given these results, we suggest that the use of intermediate doses of cytarabine, combined with filgrastim, is safe and effective in mobilizing hematopoietic stem cells (HSCs).

12.
ACS Infect Dis ; 9(10): 1889-1900, 2023 10 13.
Article En | MEDLINE | ID: mdl-37669146

The formation of biofilms is a common virulence factor that makes bacterial infections difficult to treat and a major human health problem. Biofilms are bacterial communities embedded in a self-produced matrix of extracellular polymeric substances (EPS). In this work, we show that vCPP2319, a polycationic peptide derived from the capsid protein of Torque teno douroucouli virus, is active against preformed Staphylococcus aureus biofilms produced by both a reference strain and a clinical strain isolated from a diabetic foot infection, mainly by the killing of biofilm-embedded bacteria. The direct effect of vCPP2319 on bacterial cells was imaged using atomic force and confocal laser scanning microscopy, showing that the peptide induces morphological changes in bacterial cells and membrane disruption. Importantly, vCPP2319 exhibits low toxicity toward human cells and high stability in human serum. Since vCPP2319 has a limited effect on the biofilm EPS matrix itself, we explored a combined effect with α-amylase (EC 3.2.1.1), an EPS matrix-degrading enzyme. In fact, α-amylase decreases the density of S. aureus biofilms by 2.5-fold. Nonetheless, quantitative analysis of bioimaging data shows that vCPP2319 partially restores biofilm compactness after digestion of the polysaccharides, probably due to electrostatic cross-bridging of the matrix nucleic acids, which explains why α-amylase fails to improve the antibacterial action of the peptide.


Staphylococcal Infections , Staphylococcus aureus , Humans , Antimicrobial Peptides , Biofilms , Staphylococcal Infections/microbiology , alpha-Amylases/pharmacology , alpha-Amylases/therapeutic use
13.
Plant Sci ; 336: 111860, 2023 Nov.
Article En | MEDLINE | ID: mdl-37683985

The increasing use of plant evidence in forensic investigations gave rise to a powerful new discipline - Forensic Botany - that analyses micro- or macroscopic plant materials, such as the totality or fragments of an organ (i.e., leaves, stems, seeds, fruits, roots) and tissue (i.e., pollen grains, spores, fibers, cork) or its chemical composition (i. e., secondary metabolites, isotopes, DNA, starch grains). Forensic botanists frequently use microscopy, chemical analysis, and botanical expertise to identify and interpret evidence crucial to solving civil and criminal issues, collaborating in enforcing laws or regulations, and ensuring public health safeguards. The present work comprehensively examines the current state and future potential of Forensic Botany. The first section conveys the critical steps of plant evidence collection, documentation, and preservation, emphasizing the importance of these initial steps in maintaining the integrity of the items. It explores the different molecular analyses, covering the identification of plant species and varieties or cultivars, and discusses the limitations and challenges of these techniques in forensics. The subsequent section covers the diversity of Forensic Botany approaches, examining how plant evidence exposes food and pharmaceutical frauds, uncovers insufficient or erroneous labeling, traces illegal drug trafficking routes, and combats the illegal collection or trade of protected species and derivatives. National and global security issues, including the implications of biological warfare, bioterrorism, and biocrime are addressed, and a review of the contributions of plant evidence in crime scene investigations is provided, synthesizing a comprehensive overview of the diverse facets of Forensic Botany.


Botany , Plants , Plants/genetics , Forensic Medicine/methods , Pollen , Seeds
14.
Genes (Basel) ; 14(9)2023 08 25.
Article En | MEDLINE | ID: mdl-37761817

Faecal Microbiota Transplantation (FMT) is a promising strategy for modulating the gut microbiome. We aimed to assess the effect of the oral administration of capsules containing lyophilised faeces on dogs with diarrhoea for 2 months as well as evaluate their long-term influence on animals' faecal consistency and intestinal microbiome. This pilot study included five dogs: two used as controls and three with diarrhoea. Animals were evaluated for four months by performing a monthly faecal samples collection and physical examination, which included faecal consistency determination using the Bristol scale. The total number of viable bacteria present in the capsules was quantified and their bacterial composition was determined by 16S rRNA gene sequencing, which was also applied to the faecal samples. During the assay, no side effects were reported. Animals' faecal consistency improved and, after ending capsules administration, Bristol scale values remained stable in two of the three animals. The animals' microbiome gradually changed toward a composition associated with a balanced microbiota. After FMT, a slight shift was observed in its composition, but the capsules' influence remained evident during the 4-month period. Capsules administration seems to have a positive effect on the microbiota modulation; however, studies with more animals should be performed to confirm our observations.


Gastrointestinal Microbiome , Dogs , Animals , Pilot Projects , RNA, Ribosomal, 16S/genetics , Feces , Diarrhea
15.
Life (Basel) ; 13(8)2023 Jul 27.
Article En | MEDLINE | ID: mdl-37629495

Due to poisoning and decline in the food resources of Eurasian vultures, there has been a rise in the number of Griffon (Gyps fulvus) and Cinereous vultures (Aegypius monachus) needing veterinary care. In captivity, vultures often develop oral and other infectious diseases which can affect their survival and the probability of reintroduction in the wild. Therefore, it is important to characterize relevant microbial species present in the oral cavity of vultures, such as Mucor spp. In this work, seven Mucor spp. isolates previously obtained from Gyps fulvus and Aegypius monachus oral swabs collected at two rehabilitation centers in Portugal were characterized regarding their pathogenic enzymatic profile and antimicrobial activity. Isolates were identified by macro and microscopic observation, and PCR and ITS sequencing. Their antimicrobial activity was determined using a collection of pathogenic bacteria and two yeast species. Results showed that 86% of the isolates produced α-hemolysis, 71% expressed DNase, 57% produce lecithinase and lipase, 29% expressed gelatinase, and 29% were biofilm producers. Four isolates showed inhibitory activity against relevant human and veterinary clinical isolates, including Escherichia coli, Enterococcus faecium, Neisseria zoodegmatis, and Staphylococcus aureus. In conclusion, accurate management programs should consider the benefits and disadvantages of Mucor spp. presence in the oral mucosa.

16.
Microb Drug Resist ; 29(10): 456-476, 2023 Oct.
Article En | MEDLINE | ID: mdl-37643289

Hospital-acquired infections are a rising problem with consequences for patients, hospitals, and health care workers. Biocides can be employed to prevent these infections, contributing to eliminate or reduce microorganisms' concentrations at the hospital environment. These antimicrobials belong to several groups, each with distinct characteristics that need to be taken into account in their selection for specific applications. Moreover, their activity is influenced by many factors, such as compound concentration and the presence of organic matter. This article aims to review some of the chemical biocides available for hospital infection control, as well as the main factors that influence their efficacy and promote susceptibility decreases, with the purpose to contribute for reducing misusage and consequently for preventing the development of resistance to these antimicrobials.


Disinfectants , Humans , Disinfectants/pharmacology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Hospitals , Drug Resistance, Bacterial
17.
Front Microbiol ; 14: 1197135, 2023.
Article En | MEDLINE | ID: mdl-37440882

Allergic rhinitis and asthma are two of the most common chronic respiratory diseases in developed countries and have become a major public health concern. Substantial evidence has suggested a strong link between respiratory allergy and upper airway dysbacteriosis, but the role of the oral bacteriota is still poorly understood. Here we used 16S rRNA massive parallel sequencing to characterize the oral bacteriome of 344 individuals with allergic rhinitis (AR), allergic rhinitis with asthma (ARAS), asthma (AS) and healthy controls (CT). Four of the most abundant (>2%) phyla (Actinobacteriota, Firmicutes, Fusobacteriota, and Proteobacteria) and 10 of the dominant genera (Actinomyces, Fusobacterium, Gemella, Haemophilus, Leptotrichia, Neisseria, Porphyromonas, Prevotella, Streptococcus, and Veillonella) in the oral cavity differed significantly (p ≤ 0.03) between AR, ARAS or AS and CT groups. The oral bacteriome of ARAS patients showed the highest intra-group diversity, while CT showed the lowest. All alpha-diversity indices of microbial richness and evenness varied significantly (p ≤ 0.022) in ARAS vs. CT and ARAS vs. AR, but they were not significantly different in AR vs. CT. All beta-diversity indices of microbial structure (Unifrac, Bray-Curtis, and Jaccard distances) differed significantly (p ≤ 0.049) between each respiratory disease group and controls. Bacteriomes of AR and ARAS patients showed 15 and 28 upregulated metabolic pathways (PICRUSt2) mainly related to degradation and biosynthesis (p < 0.05). A network analysis (SPIEC-EASI) of AR and ARAS bacteriomes depicted simpler webs of interactions among their members than those observed in the bacteriome of CT, suggesting chronic respiratory allergic diseases may disrupt bacterial connectivity in the oral cavity. This study, therefore, expands our understanding of the relationships between the oral bacteriome and allergy-related conditions. It demonstrates for the first time that the mouth harbors distinct bacteriotas during health and allergic rhinitis (with and without comorbid asthma) and identifies potential taxonomic and functional microbial biomarkers of chronic airway disease.

18.
Sci Rep ; 13(1): 8965, 2023 06 02.
Article En | MEDLINE | ID: mdl-37268693

Fungal strains used in the biocontrol of animal gastrointestinal parasites have been mainly isolated from pasture soil, decaying organic matter, and feces from herbivores and carnivores. However, their isolation from birds and assessment of predatory activity against avian GI parasites has been scarce thus far. This research aimed to isolate filamentous fungi from avian fecal samples and evaluate their predatory activity against coccidia. A pool of 58 fecal samples from chickens, laying hens, and peacocks, previously collected between July 2020-April 2021, were used for isolation of filamentous fungi and assessment of their in vitro predatory activity against coccidian oocysts, using Water-Agar medium and coprocultures. The Willis-flotation technique was also performed to obtain concentrated suspensions of oocysts. A total of seven Mucor isolates was obtained, being the only fungal taxa identified, and all presented lytic activity against coccidia. Isolates FR3, QP2 and SJ1 had significant coccidiostatic efficacies (inhibition of sporulation) higher than 70%, while isolates FR1, QP2 and QP1 had coccidicidal efficacies (destruction of the oocysts) of 22%, 14% and 8%, respectively, after 14 days of incubation, being a gradual and time-dependent process. To our knowledge, this is the first report regarding the isolation of native predatory fungi from avian feces and demonstration of their lytic activity against coccidia.


Chickens , Coccidia , Animals , Female , Oocysts , Feces/parasitology , Fungi
19.
BMC Vet Res ; 19(1): 76, 2023 Jun 08.
Article En | MEDLINE | ID: mdl-37291542

BACKGROUND: In dogs, the most frequently reported mycosis associated with Aspergillus spp. are respiratory infections. Systemic aspergillosis is uncommon, with reported cases been associated with several Aspergillus species. Aspergillus terreus species complex are ubiquitous organisms, unfrequently associated with local or systemic disease in animals and humans, and treatment of osteomyelitis caused by this species is usually unfavorable. CASE PRESENTATION: This case report describes the case of a 5-year-old dog, referred to the Veterinary Hospital of the Faculty of Veterinary Medicine of the University of Lisbon, Portugal, with a history of lameness of the right thoracic limb. Radiographs and CT scan revealed two different lesions on right humerus and radio, which were biopsied. The samples collected were submitted to cytological and histopathological evaluation and bacterial and mycological culture. Environmental samples, including of the surgery room and of the biopsy needle were also evaluated for the presence of fungi. Regarding biopsy samples, bacterial culture was negative, but mycological analysis originated a pure culture of a fungal species later identified as Aspergillus terreus by Sanger sequencing. Results were compatible with histopathologic examination, which revealed periosteal reaction and invasion of hyphae elements. Also, mycological analysis of both environmental samples evaluated were negative. The virulence profile of the fungal isolate was phenotypically characterized using specific media, allowing to reveal its ability to produce several enzymes involved in its pathogenicity, namely lipase, hemolysin and DNAse, corresponding to a Virulence Index (V. Index.) of 0.43. The patient was submitted to itraconazole therapy for 8 weeks. After 3 weeks, the patient showed significant clinical improvement, and after 6 weeks no radiographic signs were observed. CONCLUSIONS: Antifungal therapy with itraconazole can contribute to the remission of canine infections promoted by Aspergillus terreus complex with a relevant V. Index.


Dog Diseases , Osteomyelitis , Humans , Dogs , Animals , Antifungal Agents/therapeutic use , Itraconazole/therapeutic use , Aspergillus , Osteomyelitis/drug therapy , Osteomyelitis/veterinary , Dog Diseases/drug therapy
20.
Antibiotics (Basel) ; 12(5)2023 Apr 22.
Article En | MEDLINE | ID: mdl-37237697

Diabetic foot ulcers (DFU) are a major complication of diabetes mellitus and a public health concern worldwide. The ability of P. aeruginosa to form biofilms is a key factor responsible for the chronicity of diabetic foot infections (DFIs) and frequently associated with the presence of persister cells. These are a subpopulation of phenotypic variants highly tolerant to antibiotics for which new therapeutic alternatives are urgently needed, such as those based on antimicrobial peptides. This study aimed to evaluate the inhibitory effect of nisin Z on P. aeruginosa DFI persisters. To induce the development of a persister state in both planktonic suspensions and biofilms, P. aeruginosa DFI isolates were exposed to carbonyl cyanide m-chlorophenylhydrazone (CCCP) and ciprofloxacin, respectively. After RNA extraction from CCCP-induced persisters, transcriptome analysis was performed to evaluate the differential gene expression between the control, persisters, and persister cells exposed to nisin Z. Nisin Z presented a high inhibitory effect against P. aeruginosa persister cells but was unable to eradicate them when present in established biofilms. Transcriptome analysis revealed that persistence was associated with downregulation of genes related to metabolic processes, cell wall synthesis, and dysregulation of stress response and biofilm formation. After nisin Z treatment, some of the transcriptomic changes induced by persistence were reversed. In conclusion, nisin Z could be considered as a potential complementary therapy for treating P. aeruginosa DFI, but it should be applied as an early treatment or after wound debridement.

...