Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
1.
Future Microbiol ; 19(15): 1333-1353, 2024.
Article in English | MEDLINE | ID: mdl-39229784

ABSTRACT

Recent cholera outbreaks in many countries in the Middle East and North Africa (MENA) region have raised public health concerns and focused attention on the genus Vibrio. However, the epidemiology of Vibrio species in humans, water, and seafood is often anecdotal in this region. In this review, we screened the literature and provided a comprehensive assessment of the distribution and antibiotic resistance properties of Vibrio species in different clinical and environmental samples in the region. This review will contribute to understanding closely the real burden of Vibrio species and the spread of antibiotic-resistant strains in the MENA region. The overall objective is to engage epidemiologists, sanitarians and public health stakeholders to address this problem under the One-health ethos.


The Vibrio genus contains many bacterial species normally found in freshwater, estuaries and marine environments. Some of these species can be transmitted by water and food and can make people severely ill. For instance, some groups of the bacterium Vibrio cholerae (serogroups O1 and O139) can cause serious watery diarrhea called cholera. Other pathogenic Vibrio bacteria can cause other types of infections such as gastroenteritis and wound infections. Some of these bacteria are becoming increasingly resistant to antibiotics, which will threaten and complicate therapy. This review discusses the occurrence and antibiotic resistance of different important Vibrio species in the Middle East and North Africa (MENA) region.


Subject(s)
Anti-Bacterial Agents , Vibrio Infections , Vibrio , Humans , Middle East/epidemiology , Anti-Bacterial Agents/pharmacology , Vibrio Infections/epidemiology , Vibrio Infections/microbiology , Vibrio/drug effects , Vibrio/genetics , Africa, Northern/epidemiology , Drug Resistance, Bacterial , Microbial Sensitivity Tests , Disease Outbreaks , Cholera/epidemiology , Cholera/microbiology , Seafood/microbiology
4.
JMIR Public Health Surveill ; 10: e54551, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38952000

ABSTRACT

Background: Syndromic surveillance represents a potentially inexpensive supplement to test-based COVID-19 surveillance. By strengthening surveillance of COVID-19-like illness (CLI), targeted and rapid interventions can be facilitated that prevent COVID-19 outbreaks without primary reliance on testing. Objective: This study aims to assess the temporal relationship between confirmed SARS-CoV-2 infections and self-reported and health care provider-reported CLI in university and county settings, respectively. Methods: We collected aggregated COVID-19 testing and symptom reporting surveillance data from Cornell University (2020-2021) and Tompkins County Health Department (2020-2022). We used negative binomial and linear regression models to correlate confirmed COVID-19 case counts and positive test rates with CLI rate time series, lagged COVID-19 cases or rates, and day of the week as independent variables. Optimal lag periods were identified using Granger causality and likelihood ratio tests. Results: In modeling undergraduate student cases, the CLI rate (P=.003) and rate of exposure to CLI (P<.001) were significantly correlated with the COVID-19 test positivity rate with no lag in the linear models. At the county level, the health care provider-reported CLI rate was significantly correlated with SARS-CoV-2 test positivity with a 3-day lag in both the linear (P<.001) and negative binomial model (P=.005). Conclusions: The real-time correlation between syndromic surveillance and COVID-19 cases on a university campus suggests symptom reporting is a viable alternative or supplement to COVID-19 surveillance testing. At the county level, syndromic surveillance is also a leading indicator of COVID-19 cases, enabling quick action to reduce transmission. Further research should investigate COVID-19 risk using syndromic surveillance in other settings, such as low-resource settings like low- and middle-income countries.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/diagnosis , COVID-19/prevention & control , Retrospective Studies , Universities/statistics & numerical data , Sentinel Surveillance
5.
J Antimicrob Chemother ; 79(7): 1614-1618, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38804143

ABSTRACT

BACKGROUND: Carbapenem-resistant Pseudomonas aeruginosa are being increasingly described worldwide. Here, we investigated the molecular mechanisms underlying carbapenem resistance in an extremely drug-resistant P. aeruginosa isolate from a neonatal intensive care unit in Morocco. MATERIALS AND METHODS: P. aeruginosa strain O82J1 was identified using MALDI-TOF-MS. Carba NP, immunochromatographic assay NG Carba5 and antimicrobial susceptibility testing using disc diffusion and microbroth were performed. Whole-genome sequencing using the Illumina and MinION technologies and different software packages available at the Center of Genomic Epidemiology were used to predict the resistome, sequence type and plasmid types. RESULTS: P. aeruginosa O82J1 co-expressed two metallo-ß-lactamases, blaNDM-1 and blaVIM-2, and was susceptible to colistin and apramycin only. It belonged to ST773 that is frequently reported worldwide as a high-risk P. aeruginosa clone. The blaVIM-2 gene was integron-borne on a IncP-2 465-kb plasmid, whereas the blaNDM-1 gene was chromosomally encoded and embedded in an integrative conjugative element, probably at the origin of its acquisition. A total of 23 antimicrobial resistance genes were detected including a blaPER-1 ESBL gene, and an 16S-rRNA methyltransferase gene rmtB. CONCLUSIONS: The isolation of XDR P. aeruginosa isolates expressing several carbapenemases in a neonatal intensive care unit is of great concern due to the reduced treatment options, relying only on colistin, but not recommended in neonates, and apramycin, not yet approved for human therapy. Concerns were further elevated due to the resistance to cefiderocol and ATM/AVI, two novel and last-resort antibiotics recommended to treat infections caused by Gram-negative bacteria, particularly XDR P. aeruginosa in adults.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Neonatal Sepsis , Pseudomonas Infections , Pseudomonas aeruginosa , beta-Lactamases , beta-Lactamases/genetics , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/isolation & purification , Humans , Infant, Newborn , Morocco/epidemiology , Pseudomonas Infections/microbiology , Pseudomonas Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Neonatal Sepsis/microbiology , Plasmids/genetics , Whole Genome Sequencing , Intensive Care Units, Neonatal , Drug Resistance, Multiple, Bacterial/genetics , Carbapenems/pharmacology
6.
PLoS One ; 19(5): e0302579, 2024.
Article in English | MEDLINE | ID: mdl-38722969

ABSTRACT

Since March 2020, the COVID-19 pandemic has swiftly propagated, triggering a competitive race among medical firms to forge vaccines that thwart the infection. Lebanon initiated its vaccination campaign on February 14, 2021. Despite numerous studies conducted to elucidate the characteristics of immune responses elicited by vaccination, the topic remains unclear. Here, we aimed to track the progression of anti-spike SARS-CoV-2 antibody titers at two-time points (T1: shortly after the second vaccination dose, T2: six months later) within a cohort of 201 adults who received Pfizer-BioNTech (BNT162b2), AstraZeneca, or Sputnik V vaccines in North Lebanon. Blood specimens were obtained from participants, and antibody titers against SARS-CoV-2 were quantified through the Elecsys-Anti-SARS-CoV-2 S assay (Roche Diagnostics, Switzerland). We used univariate analysis and multivariable logistic regression models to predict determinants influencing the decline in immune response and the occurrence of breakthrough infections among vaccinated patients. Among the 201 participants, 141 exhibited unchanging levels of antibody titers between the two sample collections, 55 displayed waning antibody titers, and only five participants demonstrated heightened antibody levels. Notably, age emerged as the sole variable significantly linked to the waning immune response. Moreover, the BNT162b2 vaccine exhibited significantly higher efficacy concerning the occurrence of breakthrough infections when compared with the AstraZeneca vaccine. Overall, our study reflected the immune status of a sample of vaccinated adults in North Lebanon. Further studies on a larger scale are needed at the national level to follow the immune response after vaccination, especially after the addition of the third vaccination dose.


Subject(s)
Antibodies, Viral , Breakthrough Infections , COVID-19 , SARS-CoV-2 , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , Antibodies, Viral/blood , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , Breakthrough Infections/virology , COVID-19/prevention & control , COVID-19/immunology , COVID-19/epidemiology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Lebanon/epidemiology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination
7.
Microbiol Resour Announc ; 13(6): e0113923, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38695584

ABSTRACT

Imported foods play an essential role in food security and in fulfilling consumer demand. However, these foods can also carry antibiotic-resistant bacteria, which might be introduced into the country of importation. Here, we report the draft genomes of antibiotic-resistant bacteria that were isolated from imported fresh produce in Georgia, USA.

10.
Microb Drug Resist ; 30(2): 101-107, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38011748

ABSTRACT

Resistance to last resort antibiotics has been increasing, particularly in low- and middle-income countries such as Lebanon, which has well established challenges in antimicrobial stewardship and other public health and environmental issues. However, data on the emergence of antibiotic resistance in the community in Lebanon are limited. In this study, we assessed resistance to last resort antibiotics in the fecal samples of 111 otherwise healthy university students in north Lebanon. The results showed that 47.7% of the samples harbored extended-spectrum cephalosporin-resistant isolates, while 2.7% of the samples yielded colistin-resistant isolates. Furthermore, molecular analyses showed that the ß-lactamase gene group, blaCTX-M-1 group, was detected in the majority (93%) of screened extended-spectrum ß-lactamase isolates. In addition, the colistin-resistant Escherichia coli isolates carried mcr-1, including the novel mcr-1.26 variant, which was previously reported in clinical samples as well as in domesticated animals and the environment in Lebanon. Taken together, these findings highlight the occurrence of resistance to important antibiotics in the community, perhaps suggesting diffuse sources, including clinical and environmental settings, and multiple factors driving the spread of multidrug-resistant bacteria and resistance determinants. There is a pressing need for comprehensive antimicrobial stewardship programs and the implementation of evidence-based practices in clinical and community settings to mitigate the increasing spread of antimicrobial resistance.


Subject(s)
Colistin , Escherichia coli Proteins , Animals , Humans , Colistin/pharmacology , Anti-Bacterial Agents/pharmacology , Cephalosporins/pharmacology , Escherichia coli Proteins/genetics , Universities , Drug Resistance, Bacterial/genetics , Microbial Sensitivity Tests , Escherichia coli , beta-Lactamases/genetics , Monobactams , Students
11.
J Glob Antimicrob Resist ; 36: 59-61, 2024 03.
Article in English | MEDLINE | ID: mdl-38128725

ABSTRACT

OBJECTIVES: In-depth phenotypic and genomic analyses on a carbapenem-resistant Escherichia coli isolate, recovered from the faeces of a farm dog in Lebanon, focusing on its antimicrobial resistance (AMR) patterns and the underlying resistome. METHODS: E. coli strain EC-106 was identified using MALDI-TOF-MS. Analyses using Carba NP, immunochromatographic assay NG Carba5, and other antimicrobial susceptibility testing were performed. Whole-genome sequencing (WGS) using the Illumina technology and different software available at the Center of Genomic Epidemiology wwere used to predict the resistome, sequence type (ST), plasmid types, and virulence genes. RESULTS: Susceptibility testing revealed that E. coli EC-106 was multi-drug resistant, including against newer antimicrobials such as imipenem-relebactam (MIC = 16 µg/mL), meropenem-vaborbactam (MIC = 16 µg/mL), and ceftazidime-avibactam (MIC > 32 µg/mL), but remained susceptible to aztreonam (MIC = 0.12 µg/mL), aztreonam-avibactam (MIC = 0.06 µg/mL), and cefiderocol (MIC = 0.5 µg/mL). WGS analyses showed that E. coli EC-106 carried 13 acquired resistance genes associated with resistance to ß-lactams (blaNDM-5 and blaTEM-1B), aminoglycosides (aac(3)-IId, aph(3')-Ia, aadA1, and aadA2), tetracyclines (tetA), amphenicols (partial catA1), macrolides (mphA), sulphonamides (sul1 and sul3), trimethoprim (dfrA12), and quaternary ammonium compounds (partial qacE). The blaNDM-5 was located on an IncX3 plasmid. The isolate was predicted to be a human pathogen (92.9%) and belonged to ST1011. CONCLUSION: To our knowledge, this is the first report of the detection of an IncX3 plasmid carrying the blaNDM-5 gene in animals in Lebanon, highlighting the severe AMR challenges in the country. Taken together, our current and previous findings suggest that blaNDM-5 might be spreading in different hosts and genetic backgrounds across clinical and non-clinical settings.


Subject(s)
Bacterial Proteins , Escherichia coli Infections , Escherichia coli , beta-Lactamases , Dogs , Humans , Animals , Aztreonam/pharmacology , Farms , Escherichia coli Infections/veterinary , Escherichia coli Infections/epidemiology , Drug Resistance, Multiple, Bacterial/genetics , Plasmids/genetics , Anti-Bacterial Agents/pharmacology
12.
J Glob Antimicrob Resist ; 36: 175-180, 2024 03.
Article in English | MEDLINE | ID: mdl-38154747

ABSTRACT

OBJECTIVES: The contamination of fresh surface waters poses a significant burden on human health and prosperity, especially in marginalized communities with limited resources and inadequate infrastructure. Here, we performed in-depth genomic analyses of multidrug-resistant bacteria (MDR-B) isolated from Al-Oueik river water that is used for irrigation of agricultural fields in a disenfranchised area that also hosts a makeshift Syrian refugee camp. METHODS: A composite freshwater sample was filtered. Faecal coliforms were counted and extended spectrum cephalosporins and/or ertapenem resistant bacteria were screened. Isolates were identified using MALDI-TOF-MS and analysed using whole-genome sequencing (WGS) to identify the resistome, sequence types, plasmid types, and virulence genes. RESULTS: Approximately 106 CFU/100 mL of faecal coliforms were detected in the water. Four drug-resistant Gram-negative bacteria were identified, namely Escherichia coli, Klebsiella pneumoniae, Enterobacter hormaechei, and Pseudomonas otitidis. Notably, the E. coli isolate harboured blaNDM-5 and a YRIN-inserted PBP3, representing an emerging public health challenge. The K. pneumoniae isolate carried blaSHV-187 as well as mutations in the gene encoding the OmpK37 porin. Enterobacter hormaechei and P. otitidis harboured blaACT-16 and blaPOM-1, respectively. CONCLUSION: This report provides comprehensive genomic analyses of MDR-B in irrigation water in Lebanon. Our results further support that irrigation water contaminated with faecal material can be a reservoir of important MDR-B, which can spread to adjacent agricultural fields and other water bodies, posing both public health and food safety issues. Therefore, there is an urgent need to implement effective water quality monitoring and management programs to control the proliferation of antibiotic-resistant pathogens in irrigation water in Lebanon.


Subject(s)
Escherichia coli , Rivers , Humans , Escherichia coli/genetics , Rivers/microbiology , Enterobacter/genetics , Plasmids/genetics , Klebsiella pneumoniae/genetics , Gram-Negative Bacteria
13.
Front Public Health ; 11: 1290912, 2023.
Article in English | MEDLINE | ID: mdl-38074718

ABSTRACT

Background: Carbapenem- and extended-spectrum cephalosporin-resistant Enterobacterales (CR-E and ESCR-E, respectively) are increasingly isolated worldwide. Information about these bacteria is sporadic in Lebanon and generally relies on conventional diagnostic methods, which is detrimental for a country that is struggling with an unprecedented economic crisis and a collapsing public health system. Here, CR-E isolates from different Lebanese hospitals were characterized. Materials and methods: Non-duplicate clinical ESCR-E or CR-E isolates (N = 188) were collected from three hospitals from June 2019 to December 2020. Isolates were identified by MALDI-TOF, and their antibiotic susceptibility by Kirby-Bauer disk diffusion assay. CR-E isolates (n = 33/188) were further analyzed using Illumina-based WGS to identify resistome, MLST, and plasmid types. Additionally, the genetic relatedness of the CR-E isolates was evaluated using an Infrared Biotyper system and compared to WGS. Results: Using the Kirby-Bauer disk diffusion assay, only 90 isolates out of the 188 isolates that were collected based on their initial routine susceptibility profile by the three participating hospitals could be confirmed as ESCR-E or CR-E isolates and were included in this study. This collection comprised E. coli (n = 70; 77.8%), K. pneumoniae (n = 13; 14.4%), Enterobacter spp. (n = 6; 6.7%), and Proteus mirabilis (n = 1; 1.1%). While 57 were only ESBL producers the remaining 33 isolates (i.e., 26 E. coli, five K. pneumoniae, one E. cloacae, and one Enterobacter hormaechei) were resistant to at least one carbapenem, of which 20 were also ESBL-producers. Among the 33 CR-E, five different carbapenemase determinants were identified: blaNDM-5 (14/33), blaOXA-244 (10/33), blaOXA-48 (5/33), blaNDM-1 (3/33), and blaOXA-181 (1/33) genes. Notably, 20 CR-E isolates were also ESBL-producers. The analysis of the genetic relatedness revealed a substantial genetic diversity among CR-E isolates, suggesting evolution and transmission from various sources. Conclusion: This study highlighted the emergence and broad dissemination of blaNDM-5 and blaOXA-244 genes in Lebanese clinical settings. The weak AMR awareness in the Lebanese community and the ongoing economic and healthcare challenges have spurred self-medication practices. Our findings highlight an urgent need for transformative approaches to combat antimicrobial resistance in both community and hospital settings.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Escherichia coli/genetics , Lebanon , Multilocus Sequence Typing , Anti-Bacterial Agents/pharmacology , Hospitals , Klebsiella pneumoniae/genetics , Carbapenems/pharmacology
14.
Microb Genom ; 9(12)2023 Dec.
Article in English | MEDLINE | ID: mdl-38100171

ABSTRACT

In this study, we characterized 54 clinical isolates of Shigella collected in North Lebanon between 2009 and 2017 through phenotypic and genomic analyses. The most prevalent serogroup was S. sonnei, accounting for 46.3 % (25/54) of the isolates, followed by S. flexneri (27.8 %, 15/54), S. boydii (18.5 %, 10/54) and S. dysenteriae (7.4 %, 4/54). Only three isolates were pan-susceptible, and 87 % (47/54) of the isolates had multidrug resistance phenotypes. Notably, 27.8 % (15/54) of the isolates were resistant to third-generation cephalosporins (3GCs) and 77.8 % (42/54) were resistant to nalidixic acid. 3GC resistance was mediated by the extended-spectrum beta-lactamase genes bla CTX-M-15 and bla CTX-M-3, which were present on various plasmids. Quinolone resistance was conferred by single point mutations in the gyrA DNA gyrase gene, leading to GyrA S83L, GyrA D87Y or GyrA S83A amino acid substitutions. This is the first study, to our knowledge, to provide genomic insights into the serotypes of Shigella circulating in Lebanon and the various antimicrobial resistance determinants carried by these strains.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Anti-Bacterial Agents/pharmacology , Lebanon , Drug Resistance, Bacterial/genetics , Genomics , Point Mutation
15.
medRxiv ; 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37790370

ABSTRACT

Neonatal infections due to Paenibacillus species have increasingly been reported over the last few years. We performed a structured literature review of human Paenibacillus infections in infants and adults to compare the epidemiology of infections between these distinct patient populations. Thirty-nine reports describing 176 infections met our inclusion criteria and were included. There were 37 Paenibacillus infections occurring in adults caused by 23 species. The clinical presentations of infections were quite variable. In contrast, infections in infants were caused by only 3 species: P. thiaminolyticus (112/139, 80%), P. alvei (2/139, 1%) and P. dendritiformis (2/139, 1%). All of the infants with Paenibacillus infection presented with a sepsis syndrome or meningitis, often complicated by extensive cerebral destruction and hydrocephalus. Outcomes were commonly poor with 17% (24/139) mortality. Cystic encephalomalacia due to brain destruction was common in both Ugandan and American cases and 92/139 (66%) required surgical management of hydrocephalus following their infection. Paenibacillus infections are likely underappreciated in infants and effective treatments are urgently needed.

16.
Antibiotics (Basel) ; 12(9)2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37760710

ABSTRACT

Antimicrobial resistance is a serious threat, particularly in low- and middle-income countries (LMICs). Antifungal resistance is often underestimated in both healthcare and non-clinical settings. In LMICs, it is believed that the inappropriate use of antifungals, limited surveillance systems, and low diagnostic capacities are significant drivers of resistance. Like other LMICs, Lebanon lacks antifungal use and resistance surveillance programs, and the impact of antifungal resistance in the country remains unclear, especially during the unfolding economic crisis that has severely affected medical care and access to safe food and water. Interestingly, the widespread use of antifungals in medicine and agriculture has raised concerns about the development of antifungal resistance in Lebanon. In this light, we aimed to survey available antifungal drugs in the country and evaluate susceptibility patterns of prevalent fungal species to guide empiric treatments and develop antifungal stewardship programs in Lebanon. We noted that the economic crisis resulted in significant increases in antifungal drug prices. Additionally, a comprehensive literature search across PubMed, ScienceDirect, and Google Scholar databases identified 15 studies on fungal infections and antifungal resistance conducted from 1998 to 2023 in Lebanon. While data on antifungal resistance are limited, 87% of available studies in Lebanon focused on candidiasis, while the remaining 13% were on aspergillosis. Overall, we observed a marked antimicrobial resistance among Candida and Aspergillus species. Additionally, incidences of Candida auris infections have increased in Lebanese hospitals during the COVID-19 pandemic, with a uniform resistance to fluconazole and amphotericin-B. Taken together, a One Health approach, reliable diagnostics, and prudent antifungal use are required to control the spread of resistant fungal pathogens in healthcare and agricultural settings.

17.
Pathogens ; 12(8)2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37623974

ABSTRACT

Contaminated, raw or undercooked vegetables can transmit parasitic infections. Here, we investigated parasitic contamination of leafy green vegetables sold in local markets in the Tripoli district, Lebanon, during two consecutive autumn seasons (2020-2021). The study involved the microscopic examination of 300 samples of five different types of vegetables (60 samples per type) and used standardized qualitative parasitological techniques for some protozoa and helminths. The results showed that 16.7% (95% interval for p: 12.6%, 21.4%) (50/300) of the vegetable samples were contaminated with at least one parasite. The most frequently detected parasite was Blastocystis spp. (8.7%; 26/300); this was followed in frequency by Ascaris spp. (3.7%; 11/300). Among the different vegetable types, lettuce (23.3%; 14/60) was the most contaminated, while arugula was the least contaminated (11.7%; 7/60). The statistical analysis did not reveal any significant association between the prevalence of parasitic contamination and the investigated risk factors, which included collection date, vegetable type, market storage status, and wetness of vegetables at the time of purchase (p > 0.05). The high prevalence of parasitic contamination also suggested the potential presence of other microbial pathogens. These findings are important because leafy green vegetables are preferentially and heavily consumed raw in Lebanon. Thus, implementing effective measures that target the farm-to-fork continuum is recommended in order to reduce the spread of intestinal pathogens.

18.
J Glob Antimicrob Resist ; 34: 176-178, 2023 09.
Article in English | MEDLINE | ID: mdl-37429544

ABSTRACT

OBJECTIVES: We isolated a highly colistin-resistant Escherichia coli, strain 58, from fresh chicken wings in Lebanon. Here, we performed in-depth phenotypic and genomic analyses to identify the resistome of the isolate, focusing on the determinants that encoded colistin resistance. METHODS: The minimum inhibitory concentration (MIC) of colistin and resistance to other antibiotics were determined using the broth microdilution method and the Kirby-Bauer disk diffusion assay, respectively. Whole-genome sequencing (WGS) and different software available at the Center of Genomic Epidemiology were used to predict the resistome, the sequence type (ST), and the presence of virulence genes and plasmid replicon types. RESULTS: Susceptibility testing revealed that E. coli 58 exhibited multidrug resistance, including against colistin (MIC = 32 µg/mL). Whole-genome sequencing analyses showed that E. coli 58 carried 26 antimicrobial resistance genes associated with resistance to polymyxins (mcr-1.26), ß-lactams (blaTEM-1b and blaCMY-2), fosfomycin (fosA4), aminoglycosides (aac(3)-IId, aadA2b, aadA5, partial aadA1, aph(3'')-Ia, aph(3')-Ia, and aph(6)-Id), tetracyclines (tetA and tetM), quinolones (qnrS1), sulphonamides (sul2 and sul3), trimethoprim (dfrA14, dfrA17, and dfrA5), phenicols (floR and cmlA1), macrolides (mphA), lincosamides (lnu(F)), quaternary ammonium compounds (partial qacL and qacE), and peroxides (sitABCD). mcr-1.26 was located on an IncX4 plasmid and induced colistin resistance in otherwise naïve E. coli and Salmonella Enteritidis. Escherichia coli 58 was predicted to be a human pathogen and belonged to ST3107. CONCLUSION: To our knowledge, this is the first report of mcr-1.26 in poultry meat worldwide. We previously reported mcr-1.26 in an MDR E. coli (ST2207) isolated from a pigeon in Lebanon, which suggests that it might be spreading in different animal hosts and genetic backgrounds.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Animals , Humans , Colistin/pharmacology , Chickens , Escherichia coli Proteins/genetics , Anti-Bacterial Agents/pharmacology , Meat
19.
One Health ; 17: 100593, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37448771

ABSTRACT

Objective: Transmission of antimicrobial resistant bacteria between people and household pets, such as dogs and cats, is an emerging global public health problem. This scoping review synthesized existing evidence of human-pet bacteria transmission to understand the magnitude and breadth of this issue. Methods: The search included specific and generic terms for bacteria, resistance, transmission, pets, and humans. Searches were conducted through PubMed, Scopus, Web of Science, CABI Global Health, Networked Digital Library of Theses and Dissertations, Google Scholar. All studies published in English and Mandarin that isolated bacteria from pets (cats and dogs) and humans who had contact with the pets, and reported phenotypic or genotypic antimicrobial sensitivity test results, were included in this review. In cases of bacterial species that are commonly associated with pets, such as Staphylococcus pseudintermedius and Pasteurella multocida, we also included studies that only isolated bacteria from humans. Results: After removing duplication, the search captured 9355 studies. A total of 1098 papers were screened in the full-text review, and 562 studies were identified as eligible according to our inclusion criteria. The primary reason for exclusion was the lack of sensitivity testing. The included studies were published between 1973 and 2021. The most common study location was the United States (n = 176, 31.3%), followed by the United Kingdom (n = 53, 9.4%), Japan (n = 29, 5.2%), and Canada (n = 25, 4.4%). Most of the included studies were case reports (n = 367, 63.4%), cross-sectional/prevalence studies (n = 130, 22.4%), and case series (n = 51, 8.8%). Only few longitudinal studies (n = 14, 2.4%), case-control studies (n = 12, 2.1%), and cohort studies (n = 5, 0.9%) were included in our review. Most studies focused on Pasteurella multocida (n = 221, 39.3%), Staphylococcus aureus (n = 81, 14.4%), and Staphylococcus pseudintermedius (n = 52, 8.9%). For the 295 studies that used strain typing methods to compare bacteria from humans and pets, most used DNA banding pattern-based methods (n = 133, 45.1%) and DNA sequencing-based methods (n = 118, 40.0%). Conclusion: Transmission of bacteria could occur in both directions: pets to humans (e.g., S. pseudintermedius and P. multocida) and humans to pets (e.g., S. aureus). The majority of studies provided a low level of evidence of transmission (e.g., case reports), suggesting that more rigorous longitudinal, cohort, or case-control studies are needed to fully understand the risk of human-pet resistant bacterial transmission.

SELECTION OF CITATIONS
SEARCH DETAIL