Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38697654

ABSTRACT

A coordinated and complex interplay of signals between motor neurons, skeletal muscle cells, and Schwann cells controls the formation and maintenance of neuromuscular synapses. Deficits in the signaling pathway for building synapses, caused by mutations in critical genes or autoantibodies against key proteins, are responsible for several neuromuscular diseases, which cause muscle weakness and fatigue. Here, we describe the role that four key genes, Agrin, Lrp4, MuSK, and Dok7, play in this signaling pathway, how an understanding of their mechanisms of action has led to an understanding of several neuromuscular diseases, and how this knowledge has contributed to emerging therapies for treating neuromuscular diseases.


Subject(s)
Neuromuscular Junction , Signal Transduction , Humans , Animals , Agrin/metabolism , LDL-Receptor Related Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Muscle Proteins/metabolism , Neuromuscular Diseases , Receptors, Cholinergic/metabolism , Synapses/physiology , Synapses/metabolism , Motor Neurons/physiology , Motor Neurons/metabolism
2.
Nature ; 595(7867): 404-408, 2021 07.
Article in English | MEDLINE | ID: mdl-34163073

ABSTRACT

Congenital myasthenia (CM) is a devastating neuromuscular disease, and mutations in DOK7, an adaptor protein that is crucial for forming and maintaining neuromuscular synapses, are a major cause of CM1,2. The most common disease-causing mutation (DOK71124_1127 dup) truncates DOK7 and leads to the loss of two tyrosine residues that are phosphorylated and recruit CRK proteins, which are important for anchoring acetylcholine receptors at synapses. Here we describe a mouse model of this common form of CM (Dok7CM mice) and a mouse with point mutations in the two tyrosine residues (Dok72YF). We show that Dok7CM mice had severe deficits in neuromuscular synapse formation that caused neonatal lethality. Unexpectedly, these deficits were due to a severe deficiency in phosphorylation and activation of muscle-specific kinase (MUSK) rather than a deficiency in DOK7 tyrosine phosphorylation. We developed agonist antibodies against MUSK and show that these antibodies restored neuromuscular synapse formation and prevented neonatal lethality and late-onset disease in Dok7CM mice. These findings identify an unexpected cause for disease and a potential therapy for both DOK7 CM and other forms of CM caused by mutations in AGRIN, LRP4 or MUSK, and illustrate the potential of targeted therapy to rescue congenital lethality.


Subject(s)
Muscle Proteins/genetics , Mutation , Myasthenic Syndromes, Congenital/drug therapy , Myasthenic Syndromes, Congenital/genetics , Aging , Agrin/genetics , Agrin/metabolism , Animals , Animals, Newborn , Antibodies/immunology , Disease Models, Animal , Female , LDL-Receptor Related Proteins/genetics , LDL-Receptor Related Proteins/metabolism , Male , Mice , Molecular Targeted Therapy , Muscle Fibers, Skeletal/chemistry , Muscle Fibers, Skeletal/metabolism , Muscle Proteins/chemistry , Muscle Proteins/metabolism , Myasthenic Syndromes, Congenital/immunology , Phosphorylation , Phosphotyrosine/genetics , Phosphotyrosine/metabolism , Proto-Oncogene Proteins c-crk/metabolism , Receptor Protein-Tyrosine Kinases/agonists , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/immunology , Receptor Protein-Tyrosine Kinases/metabolism , Recurrence , Synapses/metabolism
3.
J Cell Biol ; 218(5): 1686-1705, 2019 05 06.
Article in English | MEDLINE | ID: mdl-30842214

ABSTRACT

Complex mechanisms are required to form neuromuscular synapses, direct their subsequent maturation, and maintain the synapse throughout life. Transcriptional and post-translational pathways play important roles in synaptic differentiation and direct the accumulation of the neurotransmitter receptors, acetylcholine receptors (AChRs), to the postsynaptic membrane, ensuring for reliable synaptic transmission. Rapsyn, an intracellular peripheral membrane protein that binds AChRs, is essential for synaptic differentiation, but how Rapsyn acts is poorly understood. We screened for proteins that coisolate with AChRs in a Rapsyn-dependent manner and show that microtubule actin cross linking factor 1 (MACF1), a scaffolding protein with binding sites for microtubules (MT) and actin, is concentrated at neuromuscular synapses, where it binds Rapsyn and serves as a synaptic organizer for MT-associated proteins, EB1 and MAP1b, and the actin-associated protein, Vinculin. MACF1 plays an important role in maintaining synaptic differentiation and efficient synaptic transmission in mice, and variants in MACF1 are associated with congenital myasthenia in humans.


Subject(s)
Microfilament Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Muscle Proteins/metabolism , Myasthenic Syndromes, Congenital/pathology , Neuromuscular Junction/physiology , Synapses/physiology , Actins/metabolism , Adult , Animals , Child, Preschool , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microfilament Proteins/genetics , Microfilament Proteins/physiology , Microtubule-Associated Proteins/genetics , Microtubules/metabolism , Muscle Proteins/genetics , Mutation, Missense , Myasthenic Syndromes, Congenital/genetics , Myasthenic Syndromes, Congenital/metabolism , Pedigree , Receptors, Cholinergic/metabolism , Synaptic Transmission , Exome Sequencing
4.
Med Sci (Paris) ; 34(1): 54-62, 2018 Jan.
Article in French | MEDLINE | ID: mdl-29384097

ABSTRACT

The maintenance of our physiological functions and their adaptive response to environmental changes depend on precise crosstalk between organs. Recent advances in mouse genetics have helped demonstrate that this holistic view of physiology extends to the skeletal system, where many unexpected signaling axes are found to play essential roles affecting numerous organs. After being long regarded as a static tissue, functioning merely as a structural support system, the skeleton has seen its image evolve into a much more complex picture. The skeleton reveals itself as a key endocrine organ for the homeostasis of our body, both by its central position in our body, but also by the large number of physiological functions it influences. In this review, we discuss the multiple endocrine roles of osteocalcin, an osteoclast-derived molecule (Ocn), where its functional importance has steadily increased over the last 15 years.


Subject(s)
Bone and Bones/physiology , Endocrine System/physiology , Osteocalcin/physiology , Animals , Endocrine System/drug effects , Energy Metabolism/physiology , Homeostasis/drug effects , Homeostasis/physiology , Humans , Osteocalcin/metabolism , Osteocalcin/pharmacology , Osteoclasts/physiology
5.
Cell Metab ; 10(3): 167-77, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19723493

ABSTRACT

TGR5 is a G protein-coupled receptor expressed in brown adipose tissue and muscle, where its activation by bile acids triggers an increase in energy expenditure and attenuates diet-induced obesity. Using a combination of pharmacological and genetic gain- and loss-of-function studies in vivo, we show here that TGR5 signaling induces intestinal glucagon-like peptide-1 (GLP-1) release, leading to improved liver and pancreatic function and enhanced glucose tolerance in obese mice. In addition, we show that the induction of GLP-1 release in enteroendocrine cells by 6alpha-ethyl-23(S)-methyl-cholic acid (EMCA, INT-777), a specific TGR5 agonist, is linked to an increase of the intracellular ATP/ADP ratio and a subsequent rise in intracellular calcium mobilization. Altogether, these data show that the TGR5 signaling pathway is critical in regulating intestinal GLP-1 secretion in vivo, and suggest that pharmacological targeting of TGR5 may constitute a promising incretin-based strategy for the treatment of diabesity and associated metabolic disorders.


Subject(s)
Bile Acids and Salts/metabolism , Cholic Acids/pharmacology , Glucose/metabolism , Receptors, G-Protein-Coupled/metabolism , Adenosine Triphosphate/metabolism , Animals , CHO Cells , Calcium/metabolism , Cell Line , Cholic Acids/chemistry , Cricetinae , Cricetulus , Enteroendocrine Cells/metabolism , Glucagon-Like Peptide 1/metabolism , Homeostasis , Humans , Insulin/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Obese , Oxidative Phosphorylation , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/deficiency , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...