Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
BMC Res Notes ; 17(1): 219, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39103906

ABSTRACT

OBJECTIVE: In past work in budding yeast, we identified a nucleosomal region required for proper interactions between the histone chaperone complex yFACT and transcribed genes. Specific histone mutations within this region cause a shift in yFACT occupancy towards the 3' end of genes, a defect that we have attributed to impaired yFACT dissociation from DNA following transcription. In this work we wished to assess the contributions of DNA sequences at the 3' end of genes in promoting yFACT dissociation upon transcription termination. RESULTS: We generated fourteen different alleles of the constitutively expressed yeast gene PMA1, each lacking a distinct DNA fragment across its 3' end, and assessed their effects on occupancy of the yFACT component Spt16. Whereas most of these alleles conferred no defects on Spt16 occupancy, one did cause a modest increase in Spt16 binding at the gene's 3' end. Interestingly, the same allele also caused minor retention of RNA Polymerase II (Pol II) and altered nucleosome occupancy across the same region of the gene. These results suggest that specific DNA sequences at the 3' ends of genes can play roles in promoting efficient yFACT and Pol II dissociation from genes and can also contribute to proper chromatin architecture.


Subject(s)
Nucleosomes , RNA Polymerase II , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Nucleosomes/metabolism , Nucleosomes/genetics , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Transcriptional Elongation Factors/genetics , Transcriptional Elongation Factors/metabolism , Histone Chaperones/genetics , Histone Chaperones/metabolism , DNA, Fungal/genetics , DNA, Fungal/metabolism , Alleles , Base Sequence , Gene Expression Regulation, Fungal , Transcription, Genetic
2.
Transcription ; 10(4-5): 195-206, 2019.
Article in English | MEDLINE | ID: mdl-31809228

ABSTRACT

FACT (FAcilitates Chromatin Transactions) is a highly conserved histone chaperone complex in eukaryotic cells that can interact and manipulate nucleosomes in order to promote a variety of DNA-based processes and to maintain the integrity of chromatin throughout the genome. Whereas key features of the physical interactions that occur between FACT and nucleosomes in vitro have been elucidated in recent years, less is known regarding FACT functional dynamics in vivo. Using the Saccharomyces cerevisiae system, we now provide evidence that at least at some genes dissociation of the FACT subunit Spt16 from their 3' ends is partially dependent on RNA Polymerase II (Pol II) termination. Combined with other studies, our results are consistent with a two-phase mechanism for FACT dissociation from genes, one that occurs upstream from Pol II dissociation and is Pol II termination-independent and the other that occurs further downstream and is dependent on Pol II termination.


Subject(s)
RNA Polymerase II/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Transcriptional Elongation Factors/metabolism , Saccharomyces cerevisiae/metabolism , Transcription Termination, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL