ABSTRACT
Corynebacterium striatum, a common constituent of the human skin microbiome, is now considered an emerging multidrug-resistant pathogen of immunocompromised and chronically ill patients. However, little is known about the molecular mechanisms in the transition from colonization to the multidrug-resistant (MDR) invasive phenotype in clinical isolates. This study performed a comprehensive pan-genomic analysis of C. striatum, including isolates from "normal skin microbiome" and from MDR infections, to gain insights into genetic factors contributing to pathogenicity and multidrug resistance in this species. For this, three novel genome sequences were obtained from clinical isolates of C. striatum of patients from Brazil, and other 24 complete or draft C. striatum genomes were retrieved from GenBank, including the ATCC6940 isolate from the Human Microbiome Project. Analysis of C. striatum strains demonstrated the presence of an open pan-genome (α = 0.852803) containing 3816 gene families, including 15 antimicrobial resistance (AMR) genes and 32 putative virulence factors. The core and accessory genomes included 1297 and 1307 genes, respectively. The identified AMR genes are primarily associated with resistance to aminoglycosides and tetracyclines. Of these, 66.6% are present in genomic islands, and four AMR genes, including aac(6')-ib7, are located in a class 1-integron. In conclusion, our data indicated that C. striatum possesses genomic characteristics favorable to the invasive phenotype, with high genomic plasticity, a robust genetic arsenal for iron acquisition, and important virulence determinants and AMR genes present in mobile genetic elements.
Subject(s)
Anti-Bacterial Agents , Corynebacterium , Humans , Phenotype , Virulence Factors/genetics , Drug Resistance, Multiple, Bacterial/genetics , Microbial Sensitivity TestsABSTRACT
Corynebacterium amycolatum is a nonlipophilic coryneform which is increasingly being recognized as a relevant human and animal pathogen showing multidrug resistance to commonly used antibiotics. However, little is known about the molecular mechanisms involved in transition from colonization to the MDR invasive phenotype in clinical isolates. In this study, we performed a comprehensive pan-genomic analysis of C. amycolatum, including 26 isolates from different countries. We obtained the novel genome sequences of 8 of them, which are multidrug resistant clinical isolates from Spain and Tunisia. They were analyzed together with other 18 complete or draft C. amycolatum genomes retrieved from GenBank. The species C. amycolatum presented an open pan-genome (α = 0.854905), with 3,280 gene families, being 1,690 (51.52%) in the core genome, 1,121 related to accessory genes (34.17%), and 469 related to unique genes (14.29%). Although some classic corynebacterial virulence factors are absent in the species C. amycolatum, we did identify genes associated with immune evasion, toxin, and antiphagocytosis among the predicted putative virulence factors. Additionally, we found genomic evidence for extensive acquisition of antimicrobial resistance genes through genomic islands.
ABSTRACT
Biochemical, serological, and molecular methods have been developed for the laboratory diagnosis of diseases caused by C. pseudotuberculosis (CP), but the identification of the pathogen and biovars differentiation may be time-consuming, expensive, and confusing compared with other bacteria. This study aimed to evaluate MALDI Biotyper and Overall Genome Relatedness Index (OGRI) analysis to optimize the identification and differentiation of biovars of C. pseudotuberculosis. Out of 230 strains isolated from several hosts and countries, 202 (87.8%) were precisely classified using MALDI Biotyper and the BioNumerics platform. The classification accuracies for the Ovis and Equi biovars were 80 (88.75%) and 82 (92.68%), respectively. When analyzing a sampling of these strains by Average Nucleotide Identity based on BLAST and TETRA analyses using genomic sequence data, it was possible to differentiate 100% of the strains in Equi and Ovis. Our data show that MALDI Biotyper and OGRI analysis help identify C. pseudotuberculosis at the species and biovar levels.
Subject(s)
Corynebacterium pseudotuberculosis , Sheep , Animals , Corynebacterium pseudotuberculosis/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-IonizationABSTRACT
Common strategies to improve recombinant protein production in Escherichia coli often involve the test and optimization of several different variables, when using traditional expression vectors that are commercially available. Now, modern synthetic biology-based strategies allow for extensive modifications of these traditional vectors, or even construction of entirely new modular vectors, so as to permit tunable production of the recombinant proteins of interest. Herein, we describe the engineering of a new expression operating unit (EOU; 938 bp) for producing recombinant proteins in E. coli, through the combinatorial assembly of standardized and well-characterized genetic elements required for transcription and translation (promoter, operator site, RBS, junction RBS-CDS, cloning module, transcriptional terminator). We also constructed a novel T7 promoter variant with increased transcriptional activity (1.7-fold higher), when compared to the canonical wild type T7 promoter sequence. This new EOU yielded an improved production of the reporter protein superfolder GFP (sfGFP) in E. coli BL21(DE3) (relative fluorescence units/RFU = 70.62 ± 1.62 A U.) when compared to a high-producing control expression vector (plasmid BBa_I746909; RFU = 59.68 ± 1.82 A U.). The yields of purified soluble recombinant sfGFP were also higher when using the new EOU (188 mg L-1 culture vs. 108 mg L-1 in the control) and it performed similarly well when inserted into different plasmid backbones (pOPT1.0/AmpR and pOPT2.0/CmR).
Subject(s)
Escherichia coli , Genetic Vectors , Escherichia coli/genetics , Escherichia coli/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Plasmids/genetics , Promoter Regions, Genetic , Recombinant Proteins/genetics , Recombinant Proteins/metabolismABSTRACT
Toxocariasis is an infection caused by the round worms Toxocara canis and Toxocara cati. It occurs worldwide though it is more prevalent in developing countries. For the diagnosis of toxocariasis, the most used method is the indirect enzyme-linked immunosorbent assay (indirect ELISA), based on the detection of specific antibodies using the excreted/secreted products from T. canis larvae (TES) as antigens, but it cross-reacts with several helminth infections. For this reason, there is a need to investigate species-specific immunoreactive proteins, which can be used for the development of a more sensitive and specific diagnosis. This study aims to investigate immunoreactive protein candidates to be used for the development of a more sensitive and specific diagnosis of Toxocara spp. infection in humans. We have used immunoblotting and mass spectrometry to select four Toxocara canis immunoreactive proteins that were recombinantly expressed in bacteria and evaluated as potential new diagnostic antigens (rMUC3, rTES 26, rTES32 and rCTL4). The recognition of these recombinant proteins by total serum IgG and IgG4 was assayed using the purified proteins in an isolated manner or in combination. The IgG ELISAs performed with individual recombinant antigens reached values of sensitivity and specificity that ranged from 91.7% to 97.3% and 94.0% to 97.9%, respectively. Among the analyses, the IgG4 immunoassay was proven to be more effective, revealing a sensitivity that ranged from 88.8% to 98.3% and a specificity of 97.8%-97.9%. The IgG4 ELISA was shown to be more effective and presented no cross-reactivity when using combinations of the rTES 26 and rCTL4 recombinant proteins. The combination of these two molecules achieved 100% sensitivity and specificity. The use of only two recombinant proteins can contribute to improve the current panorama of toxocariasis immunodiagnosis for, with a better optimization and reduced cost.
Subject(s)
Toxocara canis , Toxocariasis , Animals , Antigens, Helminth , Enzyme-Linked Immunosorbent Assay/methods , Enzyme-Linked Immunosorbent Assay/veterinary , Humans , Immunoblotting/veterinary , Immunoglobulin G , Immunologic Tests/veterinary , Proteomics , Recombinant Proteins , Toxocara , Toxocariasis/diagnosisABSTRACT
Blomia tropicalis and Dermatophagoides pteronyssinus play an important role in triggering allergy. Glycycometus malaysiensis causes IgE reaction in sensitive people, but is rarely reported in domestic dust, because it is morphologically similar to B. tropicalis making the identification of these species difficult. The identification of mites is mostly based on morphology, a time-consuming and ambiguous approach. Herein, we describe a multiplex polymerase chain reaction (mPCR) assay based on ribosomal DNA capable to identify mixed cultures of B. tropicalis, D. pteronyssinus and G. malaysiensis, and/or to identify these species from environmental dust. For this, the internal transcribed spacer 2 (ITS2) regions, flanked by partial sequences of the 5.8S and 28S genes, were PCR-amplified, cloned and sequenced. The sequences obtained were aligned with co-specific sequences available in the GenBank database for primer design and phylogenetic studies. Three pairs of primers were chosen to compose the mPCR assay, which was used to verify the frequency of different mites in house dust samples (n = 20) from homes of Salvador, Brazil. Blomia tropicalis was the most frequent, found in 95% of the samples, followed by G. malaysiensis (70%) and D. pteronyssinus (60%). Besides reporting for the first time the occurrence of G. malaysiensis in Brazil, our results confirm the good resolution of the ITS2 region for mite identification. Furthermore, the mPCR assay proved to be a fast and reliable tool for identifying these mites in mixed cultures and could be applied in future epidemiological studies, and for quality control of mite extract production for general use.
Subject(s)
Dermatophagoides pteronyssinus , Mites , Animals , Antigens, Dermatophagoides , Brazil , Dust , Humans , Multiplex Polymerase Chain Reaction , PhylogenyABSTRACT
BACKGROUND: Allergic diseases figure among the most common immune-mediated diseases worldwide, affecting more than 25% of the world's population. Allergic reactions can be triggered by house dust mite (HDM) allergens, of which the so-called group 21 of allergens is considered as clinically relevant. METHODS: Herein, we used a structural bioinformatics and immunoinformatics approach to design hypoallergenic mutant variants of the Der p 21 allergen of Dermatophagoides pteronyssinus, which were then recombinantly expressed in bacteria and tested for their IgE-reactivities. For this, we scanned the wild-type Der p 21 protein for all possible single amino acid substitutions in key IgE-binding regions that could render destabilization of the major epitope regions. RESULTS: Four main substitutions (D82P, K110G, E77G, and E87S) were selected to build mutant variants of the Der p 21 allergen, which were produced in their recombinant forms; two of these variants showed reduced reactivity with IgE. Molecular dynamic simulations and immune simulations demonstrated the overall effects of these mutations on the structural stability of the Der p 21 allergen and on the profile of immune response induced through immunotherapy. CONCLUSIONS: When produced in their recombinant forms, two of the Der p 21 mutant variants, namely proteins K110G and E87S, showed significantly reduced IgE reactivities against sera from HDM-allergic individuals (n = 20; p < 0.001). GENERAL SIGNIFICANCE: This study successfully translated a rational in silico mutagenesis design into low IgE-binding mutant variants of the allergen rDer p 21. These novel hypoallergens are promising to compose next-generation allergen-immunotherapy formulations in near future.
Subject(s)
Hypersensitivity , Immunoglobulin E , Allergens/genetics , Animals , Antigens, Dermatophagoides/chemistry , Antigens, Dermatophagoides/genetics , Arthropod Proteins/genetics , Humans , Hypersensitivity/genetics , Immunoglobulin E/genetics , Pyroglyphidae/genetics , Pyroglyphidae/metabolismABSTRACT
Recombinant proteins are generally fused with solubility enhancer tags to improve the folding and solubility of the target protein of interest. However, the fusion protein strategy usually requires expensive proteases to perform in vitro proteolysis and additional chromatographic steps to obtain tag-free recombinant proteins. Expression systems based on intracellular processing of solubility tags in Escherichia coli, through co-expression of a site-specific protease, simplify the recombinant protein purification process, and promote the screening of molecules that fail to remain soluble after tag removal. High yields of soluble target proteins have already been achieved using these protease co-expression systems. Herein, we review approaches for controlled intracellular processing systems tailored to produce soluble untagged proteins in E. coli. We discuss the different genetic systems available for intracellular processing of recombinant proteins regarding system design features, advantages, and limitations of the various strategies.
Subject(s)
Cloning, Molecular , Endopeptidases/chemistry , Escherichia coli , Gene Expression , Recombinant Fusion Proteins , Escherichia coli/genetics , Escherichia coli/metabolism , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purificationABSTRACT
Corynebacterium spp. are Gram-positive rods that are recognized to cause opportunistic diseases under certain predisposing clinical conditions. Some species have been described in urinary tract infections. In this report we document a new episode of urinary tract infection caused by Corynebacterium phoceense and describe the whole-genome sequencing, phenotypic characteristics and mass spectra obtained by matrix-assisted desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Based on genome identification and DNA-to-DNA hybridization, we can assume that our strain is the second isolate of C. phoceense to be described in a urine sample. No other infectious diseases have been reported to be associated with this species.
ABSTRACT
Varroa destructor is an ectoparasite mite that attacks bees leading to colony disorders worldwide. microRNAs (miRNAs) are key molecules used by eukaryotes to post-transcriptional control of gene expression. Nevertheless, still lack information aboutV. destructor miRNAs and its regulatory networks. Here, we used an integrative strategy to characterize the miRNAs in the V. destructor mite. We identified 310 precursors that give rise to 500 mature miRNAs, which 257 are likely mite-specific elements. miRNAs showed canonical length ranging between 18 and 25 nucleotides and 5' uracil preference. Top 10 elements concentrated over 80% of total miRNA expression, with bantam alone representing ~50%. We also detected non-templated bases in precursor-derived small RNAs, indicative of miRNA post-transcriptional regulatory mechanisms. Finally, we note that conserved miRNAs control similar processes in different organisms, suggesting a conservative role. Altogether, our findings contribute to the better understanding of the mite biology that can assist future studies on varroosis control.
Subject(s)
MicroRNAs , Varroidae , Animals , Bees/parasitology , Gene Expression Regulation , Genome , MicroRNAs/genetics , Varroidae/geneticsABSTRACT
AIM: Molecular sensitization profile analyses of allergic individuals to the house dust mites (HDM) Blomia tropicalis and Dermatophagoides pteronyssinus from Brazil and Austria, in the attempt to comprehend the individual contribution of the molecular components in the diagnosis of HDM allergy. METHODOLOGY: These analyses were made using a new in vitro multiplex allergen assay which allows simultaneous measurement of specific IgE against the whole allergen extract as well its components. RESULTS AND CONCLUSION: The data showed that in Brazil the inclusion of the molecular components Blo t 5 and/or Blo t 21 major allergens and Blo t 2 can increase the sensitivity and specificity of the assay for the diagnosis of allergy to B. tropicalis, using matrix-based methodologies. Also we highlighted, for the first time, the importance of Blo t 2 analysis for a sensitive diagnosis, since some individuals were sensitized only to this molecular component. Regarding the sensitization profile of individuals sensitized to D. pteronyssinus, we point out the importance of analyzing the molecular components Der p23 and Der p 7, in addition to Der p 1 and Der p 2 for an accurate diagnosis based on matrices.
ABSTRACT
BACKGROUND: There is growing concern about individuals reported to suffer repeat COVID-19 disease episodes, these in a small number of cases characterised as de novo infections with distinct sequences, indicative of insufficient protective immunity even in the short term. METHODS: Observational case series and case-control studies reporting 33 cases of recurrent, symptomatic, qRT-PCR positive COVID-19. Recurrent disease was defined as symptomatic recurrence after symptom-free clinical recovery, with release from isolation >14 days from the beginning of symptoms confirmed by qRT-PCR. The case control study-design compared this group of patients with a control group of 62 patients randomly selected from the same COVID-19 database. RESULTS: Of 33 recurrent COVID-19 patients, 26 were female and 30 were HCW. Mean time to recurrence was 50.5 days which was associated with being a HCW (OR 36.4 (p <0.0001)), and blood type A (OR 4.8 (pâ¯=â¯0.002)). SARS-CoV-2 antibodies were signifcantly lower in recurrent patients after initial COVID-19 (2.4⯱â¯0.610; p<0.0001) and after recurrence (6.4⯱â¯11.34; pâ¯=â¯0.007). Virus genome sequencing identified reinfection by a different isolate in one patient. CONCLUSIONS: This is the first detailed case series showing COVID-19 recurrence with qRT-PCR positivity. For one individual detection of phylogenetically distinct genomic sequences in the first and second episodes confirmed bona fide renfection, but in most cases the data do not formally distinguish between reinfection and re-emergence of a chronic infection reservoir. These episodes were significantly associated with reduced Ab response during initial disease and argue the need for ongoing vigilance without an assumption of protection after a first episode.
Subject(s)
COVID-19 , Health Personnel , Reinfection , Brazil/epidemiology , Case-Control Studies , Female , Humans , SARS-CoV-2 , Severity of Illness IndexABSTRACT
OBJECTIVES: Corynebacterium urealyticum is a non-diphtherial urease-producing clinically relevant corynebacterium associated with urinary tract infections. Most clinical C. urealyticum isolates are multidrug-resistant. Whole-genome sequencing (WGS) of C. urealyticum VH4248 isolated from a clinical urine sample at Hospital Universitario Marqués de Valdecilla, Santander, Spain, was performed to predict its antimicrobial resistance profile and to compare it with results of culture-based phenotypic antimicrobial susceptibility testing. METHODS: Classical microbiological methods and VITEK® MS were used for isolation and initial identification of strain VH4248. Draft genome sequencing was performed on an Illumina HiSeq 2500 platform, followed by assembly and annotation using SPAdes and RAST. Resistance genes were identified through PATRIC, the Pathosystems Resource Integration Center. Average nucleotide identity (ANI) analysis was done using the EDGAR and OrthoANI databases. Antimicrobial susceptibility was determined by Etest. RESULTS: Isolate VH4248 was initially identified asC. urealyticum. Its genome size is 2 261 231 bp with 64.4% GC content. Genome-based identification tools showed an average 93.7% similarity between VH4248 and C. urealyticum genomes deposited in public databases. Therefore, this isolate must be classified as Corynebacterium sp. The blaA and ermX genes as well as a class 1 integron including the aadB and sul1 genes are present in the VH4248 genome. This isolate is highly resistant to ampicillin, erythromycin and trimethoprim/sulfamethoxazole, and moderately resistant to gentamicin and kanamycin. CONCLUSIONS: WGS is a powerful tool forCorynebacterium identification to species level and for detection of unusual resistance determinants, such as that encoded by the class 1 integron in isolate VH4248.
Subject(s)
Anti-Bacterial Agents , Corynebacterium , Anti-Bacterial Agents/pharmacology , Corynebacterium/genetics , Microbial Sensitivity Tests , SpainSubject(s)
COVID-19 , Humans , Information Dissemination , Point-of-Care Testing , SARS-CoV-2 , TechnologyABSTRACT
Herein, we describe the detection of a SARS-CoV-2 genome through metatranscriptome next-generation sequencing directly from the nasopharyngeal swab of a suspected case of local transmission of Covid-19, in Brazil. Depletion of human ribosomal RNA and use of an optimized in-house developed bioinformatics strategy contributed to successful detection of the virus.
ABSTRACT
Reverse-transcription quantitative real-time polymerase chain reaction (RT-qPCR) using fluorescent DNA-binding dyes is now a gold-standard methodology to study bacterial gene expression through relative quantitation of target mRNAs under specific experimental conditions, and recent developments in the technology allow for gene expression analysis in single cells. Nevertheless, several critical steps of the RT-qPCR protocol need to be carefully addressed in order to obtain reliable results, particularly regarding RNA sample quality and appropriate choice of reference genes. Besides, accurate reporting of study conditions is essential, as recommended by the MIQE guidelines. Herein, we provide a practical approach to quantitation of the transcript levels of bacterial genes using RT-qPCR, including a general protocol for obtaining good-quality bacterial RNA and a discussion on the selection and validation of candidate bacterial reference genes for data normalization.
Subject(s)
Bacteria/genetics , Gene Expression Profiling/methods , Molecular Probe Techniques/standards , RNA, Bacterial/isolation & purification , Real-Time Polymerase Chain Reaction/methods , Fluorescent Dyes/chemistry , Gene Expression Profiling/standards , Gene Expression Regulation, Bacterial , Genes, Essential/genetics , Guidelines as Topic , Molecular Probes/chemistry , Real-Time Polymerase Chain Reaction/standards , Reference Standards , Reproducibility of ResultsABSTRACT
Solubility tags are commonly fused to target recombinant proteins to enhance their solubility and stability. In general, these protein tags must be removed to avoid misfolding of the partner protein and to allow for downstream applications. Nevertheless, in vitro tag removal increases process complexity and costs. Herein, we describe a synthetic biology-based strategy to permit in vivo removal of a solubility tag (EDA, KDPG aldolase), through co-expression of the fusion recombinant protein (EDA-EGFP) and the tag-cleaving protease (TEVp), in a controlled manner. Basically, the system uses three repressor proteins (LacI, cI434, and TetR) to regulate the expressions of EDA-EGFP and TEVp, in a regulatory cascade that culminates with the release of free soluble target protein (EGFP), following a single chemical induction by IPTG. The system worked consistently when all biological parts were cloned in a single plasmid, pSolubility(SOL)A (7.08 Kb, AmpR), and transformed in Escherichia coli Rosetta (DE3) or BL21(DE3) strains. Total soluble recombinant protein yield (EDA-EGFP + free EGFP) was ca. 272.0 ± 60.1 µg/mL of culture, following IMAC purification; free EGFP composed great part (average = 46.5%; maximum = 67.3%) of the total purified protein fraction and was easily separated from remaining fusion EDA-EGFP (53 KDa) through filtration using a 50 KDa cut-off centrifugal filter.
ABSTRACT
Biochemical tests are traditionally used for bacterial identification at the species level in clinical microbiology laboratories. While biochemical profiles are generally efficient for the identification of the most important corynebacterial pathogen Corynebacterium diphtheriae, their ability to differentiate between biovars of this bacterium is still controversial. Besides, the unambiguous identification of emerging human pathogenic species of the genus Corynebacterium may be hampered by highly variable biochemical profiles commonly reported for these species, including Corynebacterium striatum, Corynebacterium amycolatum, Corynebacterium minutissimum, and Corynebacterium xerosis. In order to identify the genomic basis contributing for the biochemical variabilities observed in phenotypic identification methods of these bacteria, we combined a comprehensive literature review with a bioinformatics approach based on reconstruction of six specific biochemical reactions/pathways in 33 recently released whole genome sequences. We used data retrieved from curated databases (MetaCyc, PathoSystems Resource Integration Center (PATRIC), The SEED, TransportDB, UniProtKB) associated with homology searches by BLAST and profile Hidden Markov Models (HMMs) to detect enzymes participating in the various pathways and performed ab initio protein structure modeling and molecular docking to confirm specific results. We found a differential distribution among the various strains of genes that code for some important enzymes, such as beta-phosphoglucomutase and fructokinase, and also for individual components of carbohydrate transport systems, including the fructose-specific phosphoenolpyruvate-dependent sugar phosphotransferase (PTS) and the ribose-specific ATP-binging cassette (ABC) transporter. Horizontal gene transfer plays a role in the biochemical variability of the isolates, as some genes needed for sucrose fermentation were seen to be present in genomic islands. Noteworthy, using profile HMMs, we identified an enzyme with putative alpha-1,6-glycosidase activity only in some specific strains of C. diphtheriae and this may aid to understanding of the differential abilities to utilize glycogen and starch between the biovars.
Subject(s)
Bacterial Proteins/genetics , Bacterial Typing Techniques/methods , Corynebacterium/genetics , Genome, Bacterial , ATP-Binding Cassette Transporters/genetics , Corynebacterium/classification , Corynebacterium/metabolism , Fructokinases/genetics , Phosphoenolpyruvate Sugar Phosphotransferase System/genetics , Phosphoglucomutase/genetics , Phylogeny , Polymorphism, GeneticABSTRACT
A multiplex-PCR (mPCR) assay was designed with species-specific primers which generate amplicons of 226bp, 434bp and 106bp for differentiating the species C. striatum, C. amycolatum, and C. xerosis, respectively. mPCR results were 100% in agreement with identifications achieved by 16S rRNA and rpoB gene sequencing and by VITEK-MS.
Subject(s)
Corynebacterium Infections/diagnosis , Corynebacterium/classification , Corynebacterium/genetics , Molecular Typing/methods , Multiplex Polymerase Chain Reaction/methods , Corynebacterium/isolation & purification , Corynebacterium Infections/microbiology , DNA Primers/genetics , DNA-Directed RNA Polymerases/genetics , Humans , RNA, Ribosomal, 16S/geneticsABSTRACT
Infection with helminthic parasites, including the soil-transmitted helminth Trichuris trichiura (human whipworm), has been shown to modulate host immune responses and, consequently, to have an impact on the development and manifestation of chronic human inflammatory diseases. De novo derivation of helminth proteomes from sequencing of transcriptomes will provide valuable data to aid identification of parasite proteins that could be evaluated as potential immunotherapeutic molecules in near future. Herein, we characterized the transcriptome of the adult stage of the human whipworm T. trichiura, using next-generation sequencing technology and a de novo assembly strategy. Nearly 17.6 million high-quality clean reads were assembled into 6414 contiguous sequences, with an N50 of 1606bp. In total, 5673 protein-encoding sequences were confidentially identified in the T. trichiura adult worm transcriptome; of these, 1013 sequences represent potential newly discovered proteins for the species, most of which presenting orthologs already annotated in the related species T. suis. A number of transcripts representing probable novel non-coding transcripts for the species T. trichiura were also identified. Among the most abundant transcripts, we found sequences that code for proteins involved in lipid transport, such as vitellogenins, and several chitin-binding proteins. Through a cross-species expression analysis of gene orthologs shared by T. trichiura and the closely related parasites T. suis and T. muris it was possible to find twenty-six protein-encoding genes that are consistently highly expressed in the adult stages of the three helminth species. Additionally, twenty transcripts could be identified that code for proteins previously detected by mass spectrometry analysis of protein fractions of the whipworm somatic extract that present immunomodulatory activities. Five of these transcripts were amongst the most highly expressed protein-encoding sequences in the T. trichiura adult worm. Besides, orthologs of proteins demonstrated to have potent immunomodulatory properties in related parasitic helminths were also predicted from the T. trichiura de novo assembled transcriptome.