Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 144
1.
Protein Sci ; 33(6): e5004, 2024 Jun.
Article En | MEDLINE | ID: mdl-38723164

Dysregulation of RNA splicing processes is intricately linked to tumorigenesis in various cancers, especially breast cancer. Cdc2-like kinase 2 (CLK2), an oncogenic RNA-splicing kinase pivotal in breast cancer, plays a significant role, particularly in the context of triple-negative breast cancer (TNBC), a subtype marked by substantial medical challenges due to its low survival rates. In this study, we employed a structure-based virtual screening (SBVS) method to identify potential CLK2 inhibitors with novel chemical structures for treating TNBC. Compound 670551 emerged as a novel CLK2 inhibitor with a 50% inhibitory concentration (IC50) value of 619.7 nM. Importantly, Compound 670551 exhibited high selectivity for CLK2 over other protein kinases. Functionally, this compound significantly reduced the survival and proliferation of TNBC cells. Results from a cell-based assay demonstrated that this inhibitor led to a decrease in RNA splicing proteins, such as SRSF4 and SRSF6, resulting in cell apoptosis. In summary, we identified a novel CLK2 inhibitor as a promising potential treatment for TNBC therapy.


Protein Kinase Inhibitors , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/chemistry , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/genetics , Female , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Molecular Docking Simulation , Cell Proliferation/drug effects
2.
Protein Sci ; 33(6): e5007, 2024 Jun.
Article En | MEDLINE | ID: mdl-38723187

The identification of an effective inhibitor is an important starting step in drug development. Unfortunately, many issues such as the characterization of protein binding sites, the screening library, materials for assays, etc., make drug screening a difficult proposition. As the size of screening libraries increases, more resources will be inefficiently consumed. Thus, new strategies are needed to preprocess and focus a screening library towards a targeted protein. Herein, we report an ensemble machine learning (ML) model to generate a CDK8-focused screening library. The ensemble model consists of six different algorithms optimized for CDK8 inhibitor classification. The models were trained using a CDK8-specific fragment library along with molecules containing CDK8 activity. The optimized ensemble model processed a commercial library containing 1.6 million molecules. This resulted in a CDK8-focused screening library containing 1,672 molecules, a reduction of more than 99.90%. The CDK8-focused library was then subjected to molecular docking, and 25 candidate compounds were selected. Enzymatic assays confirmed six CDK8 inhibitors, with one compound producing an IC50 value of ≤100 nM. Analysis of the ensemble ML model reveals the role of the CDK8 fragment library during training. Structural analysis of molecules reveals the hit compounds to be structurally novel CDK8 inhibitors. Together, the results highlight a pipeline for curating a focused library for a specific protein target, such as CDK8.


Cyclin-Dependent Kinase 8 , Machine Learning , Molecular Docking Simulation , Protein Kinase Inhibitors , Cyclin-Dependent Kinase 8/antagonists & inhibitors , Cyclin-Dependent Kinase 8/chemistry , Cyclin-Dependent Kinase 8/metabolism , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Humans , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Drug Evaluation, Preclinical/methods
3.
Int J Biol Macromol ; 259(Pt 1): 129074, 2024 Feb.
Article En | MEDLINE | ID: mdl-38163507

The overexpression of dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A), commonly observed in neurodegenerative diseases like Alzheimer's disease (AD) and Down syndrome (DS), can induce the formation of neurofibrillary tangles (NFTs) and amyloid plaques. Hence, designing a selective DYRK1A inhibitor would result in a promising small molecule for treating neurodegenerative diseases. Developing selective inhibitors for DYRK1A has been a difficult challenge due to the highly preserved ATP-binding site of protein kinases. In this study, we employed a structure-based virtual screening (SBVS) campaign targeting DYRK1A from a database containing 1.6 million compounds. Enzymatic assays were utilized to verify inhibitory properties, confirming that Y020-3945 and Y020-3957 showed inhibitory activity towards DYRK1A. In particular, the compounds exhibited high selectivity for DYRK1A over a panel of 120 kinases, reduced the phosphorylation of tau, and reversed the tubulin polymerization for microtubule stability. Additionally, treatment with the compounds significantly reduced the secretion of inflammatory cytokines IL-6 and TNF-α activated by DYRK1A-assisted NFTs and Aß oligomers. These identified inhibitors possess promising therapeutic potential for conditions associated with DYRK1A in neurodegenerative diseases. The results showed that Y020-3945 and Y020-3957 demonstrated structural novelty compared to known DYRK1A inhibitors, making them a valuable addition to developing potential treatments for neurodegenerative diseases.


Alzheimer Disease , Neurodegenerative Diseases , Humans , Phosphorylation , Protein-Tyrosine Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Neurodegenerative Diseases/metabolism , Microtubules/metabolism , Tyrosine/metabolism , tau Proteins/metabolism , Protein Kinase Inhibitors/metabolism
4.
Biochem Biophys Res Commun ; 688: 149214, 2023 12 25.
Article En | MEDLINE | ID: mdl-37951154

Pancreatic adenocarcinoma, a highly aggressive form of cancer with a poor prognosis, necessitates the development of innovative treatment strategies. Our prior research showcased the growth-inhibiting effects of the anti-EphA2 antibody drug hSD5 on pancreatic cancer tumors. This antibody targets and induces the degradation of the EphA2 receptor while also prompting the antibody's internalization. A deeper dive into the hSD5 Fab crystallographic structure and docking studies revealed that hSD5's CDRH3 drives the primary interaction between hSD5 and the EphA2 active site. In this study, we developed a novel antibody-drug conjugate (ADC)-the auristatin-based hSD5-vedotin specifically targeting EphA2 in pancreatic cancer cells. This ADC aims at the tumor-specific antigen EphA2, triggering endocytosis and releasing the conjugated payload molecule Monomethyl auristatin E (MMAE), amplifying the tumor-killing effect. Upon cellular entry, hSD5-vedotin demonstrated an impressive tumor-killing response, inhibiting tumor cell growth and promoting apoptosis even at lower antibody concentrations. In a pancreatic cancer xenograft animal model, hSD5-vedotin showcased the potential to suppress tumor growth entirely. Notably, potential immune resistance responses were also observed in recurrent pancreatic cancer tumors. Our empirical results underscore the possibility of developing hSD5-vedotin further, which we anticipate will have a broader and more potent therapeutic impact on pancreatic cancer and other EphA2-related cancers.


Adenocarcinoma , Immunoconjugates , Pancreatic Neoplasms , Animals , Humans , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Immunoconjugates/chemistry , Pancreatic Neoplasms/pathology , Adenocarcinoma/drug therapy , Cell Line, Tumor , Neoplasm Recurrence, Local , Xenograft Model Antitumor Assays , Pancreatic Neoplasms
5.
RSC Adv ; 13(45): 31595-31601, 2023 Oct 26.
Article En | MEDLINE | ID: mdl-37908644

The K2S2O8-mediated generation of p-iminoquinone contributed to the regioselective substitution of isoquinolin-5,8-dione. This hydroxyl group-guided substitution was also applied to selected heterocycles and addressed the regioselectivity issue of quinones. This study has provided an expeditious pathway from isoquinolin-5-ol (5) to ellipticine (1) and isoellipticine (2), which benefits the comprehensive comparison of their activity. Compounds 1 and 2 displayed marked MYLK4 inhibitory activity with IC50 values of 7.1 and 6.1 nM, respectively. In the cellular activity of AML cells (MV-4-11 and MOLM-13), compound 1 showed better AML activity than compound 2.

6.
Heliyon ; 9(11): e21774, 2023 Nov.
Article En | MEDLINE | ID: mdl-38034633

Erythropoietin-producing hepatocyte receptor type A2 (EphA2) is a tyrosine kinase that binds to ephrins (e.g., ephrin-A1) to initiate bidirectional signaling between cells. The binding of EphA2 and ephrin-A1 leads to the inhibition of Ras-MAPK activity and tumor growth. During tumorigenesis, the normal interaction between EphA2 and ephrin-A1 is hindered, which leads to the overexpression of EphA2 and induces cancer. The overexpression of EphA2 has been identified as a notable tumor marker in diagnosing and treating pancreatic cancer. In this study, we used phage display to isolate specific antibodies against the active site of EphA2 by using a discontinuous recombinant epitope for immunization. The therapeutic efficacy and inhibition mechanism of the generated antibody against pancreatic cancer was validated and clarified. The generated antibodies were bound to the conformational epitope of endogenous EphA2 on cancer cells, thus inducing cellular endocytosis and causing EphA2 degradation. Molecule signals pAKT, pERK, pFAK, and pSTAT3 were weakened, inhibiting the proliferation and migration of pancreatic cancer cells. The humanized antibody hSD5 could effectively inhibit the growth of the xenograft pancreatic cancer tumor cells BxPc-3 and Mia PaCa-2 in mice, respectively. When antibody hSD5 was administered with gemcitabine, significantly improved effects on tumor growth inhibition were observed. Based on the efficacy of the IgG hSD5 antibodies, clinical administration of the hSD5 antibodies is likely to suppress tumors in patients with pancreatic cancer and abnormal activation or overexpression of EphA2 signaling.

7.
Int J Mol Sci ; 24(16)2023 Aug 09.
Article En | MEDLINE | ID: mdl-37628767

Colorectal cancer (CRC) is one of the most commonly diagnosed malignancies and a leading cause of cancer worldwide. Histone deacetylases (HDACs), which regulate cell proliferation and survival, are associated with the development and progression of cancer. Moreover, HDAC inhibitors are promising therapeutic targets, with five HDAC inhibitors approved for cancer treatment to date. However, their safety profile necessitates the exploration of well-tolerated HDAC inhibitors that can be used in cancer therapeutic strategies. In this study, the pan-HDAC inhibitor MPT0G236 reduced the viability and inhibited the proliferation of human colorectal cancer cells, and normal human umbilical vein endothelial cells (HUVECs) showed reduced sensitivity. These findings indicated that MPT0G236 specifically targeted malignant tumor cells. Notably, MPT0G236 significantly inhibited the activities of HDAC1, HDAC2, and HDAC3, Class I HDACs, as well as HDAC6, a Class IIb HDAC, at low nanomolar concentrations. Additionally, it promoted the accumulation of acetyl-α-tubulin and acetyl-histone H3 in HCT-116 and HT-29 cells in a concentration-dependent manner. Furthermore, MPT0G236 treatment induced G2/M cell cycle arrest in CRC cells by initially regulating the levels of cell-cycle-related proteins, such as p-MPM2; specifically reducing p-cdc2 (Y15), cyclin B1, and cdc25C levels; and subsequently inducing apoptosis through the caspase-dependent pathways and PARP activation. Our findings demonstrate that MPT0G236 exhibits significant anticancer activity in human colorectal cancer cells.


Colorectal Neoplasms , Histone Deacetylase Inhibitors , Humans , Histone Deacetylase Inhibitors/pharmacology , Apoptosis , Cell Proliferation , Cell Cycle Proteins , Histone Deacetylases , Human Umbilical Vein Endothelial Cells , Colorectal Neoplasms/drug therapy
8.
J Food Drug Anal ; 31(2): 358-370, 2023 06 15.
Article En | MEDLINE | ID: mdl-37335158

Alzheimer's disease (AD) is a devastating neurodegenerative disease with more than 50 million people suffer from it. Unfortunately, none of the currently available drugs is able to improve cognitive impairment in AD patients. Urolithin A (UA) is a metabolite obtained from ellagic acid and ellagitannin through the intestinal flora, and it has antioxidant and anti-inflammatory properties. Previous reports found that UA had neuroprotective effects in an AD animal model, but the detailed mechanism still needs to be elucidated. In this study, we performed kinase-profiling to show that dual-specific tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is the main target of UA. Studies showed that the level of DYRK1A in AD patients' brains was higher than that of healthy people, and it was closely related to the occurrence and progression of AD. Our results revealed that UA significantly reduced the activity of DYRK1A, which led to de-phosphorylation of tau and further stabilized microtubule polymerization. UA also provided neuroprotective effects by inhibiting the production of inflammatory cytokines caused by Aß. We further showed that UA significantly improved memory impairment in an AD-like mouse model. In summary, our results indicate that UA is a DYRK1A inhibitor that may provide therapeutic advantages for AD patients.


Alzheimer Disease , Neurodegenerative Diseases , Neuroprotective Agents , Mice , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Neuroprotective Agents/pharmacology , Coumarins/pharmacology , Coumarins/therapeutic use
9.
Biomed Pharmacother ; 162: 114667, 2023 Jun.
Article En | MEDLINE | ID: mdl-37037092

Prostate cancer is a prevalent malignancy among men globally, and androgen deprivation therapy is the conventional first-line treatment for metastatic prostate cancer. While androgen deprivation therapy is efficacious in castration-sensitive prostate cancer, it remains less effective in castration-resistant cases. Transcriptional dysregulation is a well-established hallmark of cancer, and targeting proteins involved in transcriptional regulation, such as cyclin-dependent kinase 8 (CDK8), has become an attractive therapeutic strategy. CDK8, a nuclear serine-threonine kinase, is a key component of the mediator complex and plays a critical role in transcriptional regulation. Recent studies have highlighted the promising role of CDK8 as a target in the treatment of metastatic prostate cancer. Our study assessed the efficacy of a novel CDK8 inhibitor, E966-0530-45418, which exhibited potent CDK8 inhibition (IC50 of 129 nM) and high CDK8 selectivity. Treatment with E966-0530-45418 significantly inhibited prostate cancer cell migration and epithelial-to-mesenchymal transition (EMT) at both the RNA and protein levels. Further mechanistic analysis indicated that E966-0530-45418 suppresses prostate cancer metastasis by decreasing CDK8 activity and inhibiting TGF-ß1-mediated Smad3/RNA polymerase II linker phosphorylation and Akt/GSK3ß/ß-catenin signaling. The results in animal model also showed that E966-0530-45418 exhibited anti-metastatic properties in vivo. Our study demonstrated that E966-0530-45418 has great therapeutic potential in the treatment of metastatic prostate cancer.


Cyclin-Dependent Kinase 8 , Prostatic Neoplasms , Animals , Humans , Male , Androgen Antagonists , Androgens , Cell Line, Tumor , Cyclin-Dependent Kinase 8/antagonists & inhibitors , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Signal Transduction , Neoplasm Metastasis
11.
J Med Chem ; 66(4): 2566-2588, 2023 02 23.
Article En | MEDLINE | ID: mdl-36749735

The development of orally bioavailable, furanopyrimidine-based double-mutant (L858R/T790M) EGFR inhibitors is described. First, selectivity for mutant EGFR was accomplished by replacing the (S)-2-phenylglycinol moiety of 12 with either an ethanol or an alkyl substituent. Then, the cellular potency and physicochemical properties were optimized through insights from molecular modeling studies by implanting various solubilizing groups in phenyl rings A and B. Optimized lead 52 shows 8-fold selective inhibition of H1975 (EGFRL858R/T790M overexpressing) cancer cells over A431 (EGFRWT overexpressing) cancer cells; western blot analysis further confirmed EGFR mutant-selective target modulation inside the cancer cells by 52. Notably, 52 displayed in vivo antitumor effects in two different mouse xenograft models (BaF3 transfected with mutant EGFR and H1975 tumors) with TGI = 74.9 and 97.5% after oral administration (F = 27%), respectively. With an extraordinary kinome selectivity (S(10) score of 0.017), 52 undergoes detailed preclinical development.


Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , ErbB Receptors , Lung Neoplasms , Protein Kinase Inhibitors , Pyrimidines , Animals , Humans , Mice , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Lung Neoplasms/drug therapy , Mutation , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Administration, Oral , Pyrimidines/administration & dosage , Pyrimidines/pharmacology
12.
J Enzyme Inhib Med Chem ; 38(1): 2166039, 2023 Dec.
Article En | MEDLINE | ID: mdl-36683274

Inhibiting a specific target in cancer cells and reducing unwanted side effects has become a promising strategy in pancreatic cancer treatment. MAP4K4 is associated with pancreatic cancer development and correlates with poor clinical outcomes. By phosphorylating MKK4, proteins associated with cell apoptosis and survival are translated. Therefore, inhibiting MAP4K4 activity in pancreatic tumours is a new therapeutic strategy. Herein, we performed a structure-based virtual screening to identify MAP4K4 inhibitors and discovered the compound F389-0746 with a potent inhibition (IC50 120.7 nM). The results of kinase profiling revealed that F389-0746 was highly selective to MAP4K4 and less likely to cause side effects. Results of in vitro experiments showed that F389-0746 significantly suppressed cancer cell growth and viability. Results of in vivo experiments showed that F389-0746 displayed comparable tumour growth inhibition with the group treated with gemcitabine. These findings suggest that F389-0746 has promising potential to be further developed as a novel pancreatic cancer treatment.


Antineoplastic Agents , Pancreatic Neoplasms , Protein Kinase Inhibitors , Protein Serine-Threonine Kinases , Humans , Cell Line, Tumor , Gemcitabine/chemistry , Gemcitabine/pharmacology , Intracellular Signaling Peptides and Proteins , Pancreatic Neoplasms/enzymology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Computer Simulation , Pancreatic Neoplasms
13.
Phytomedicine ; 100: 154061, 2022 Jun.
Article En | MEDLINE | ID: mdl-35364561

BACKGROUND: Acute myeloid leukemia (AML) is a heterogeneous disease with poor overall survival characterized by various genetic changes. The continuous activation of oncogenic pathways leads to the development of drug resistance and limits current therapeutic efficacy. Therefore, a multi-targeting inhibitor may overcome drug resistance observed in AML treatment. Recently, groups of flavonoids, such as flavones and flavonols, have been shown to inhibit a variety of kinase activities, which provides potential opportunities for further anticancer applications. PURPOSE: In this study, we evaluated the anticancer effects of flavonoid compounds collected from our in-house library and investigated their potential anticancer mechanisms by targeting multiple kinases for inhibition in AML cells. METHODS: The cytotoxic effect of the compounds was detected by cell viability assays. The kinase inhibitory activity of the selected compound was detected by kinase-based and cell-based assays. The binding conformation and interactions were investigated by molecular docking analysis. Flow cytometry was used to evaluate the cell cycle distribution and cell apoptosis. The protein and gene expression were estimated by western blotting and qPCR, respectively. RESULTS: In this study, an O-methylated flavonol (compound 11) was found to possess remarkable cytotoxic activity against AML cells compared to treatment in other cancer cell lines. The compound was demonstrated to act against multiple kinases, which play critical roles in survival signaling in AML, including FLT3, MNK2, RSK, DYRK2 and JAK2 with IC50 values of 1 - 2 µM. Compared to our previous flavonoid compounds, which only showed inhibitions against MNKs or FLT3, compound 11 exhibited multiple kinase inhibitory abilities. Moreover, compound 11 showed effectiveness in inhibiting internal tandem duplications of FLT3 (FLT3-ITDs), which accounts for 25% of AML cases. The interactions between compound 11 and targeted kinases were investigated by molecular docking analysis. Mechanically, compound 11 caused dose-dependent accumulation of leukemic cells at the G0/G1 phase and followed by the cells undergoing apoptosis. CONCLUSION: O-methylated flavonol, compound 11, can target multiple kinases, which may provide potential opportunities for the development of novel therapeutics for drug-resistant AMLs. This work provides a good starting point for further compound optimization.


Antineoplastic Agents , Leukemia, Myeloid, Acute , Antineoplastic Agents/pharmacology , Apoptosis , Cell Line, Tumor , Flavonoids/pharmacology , Flavonoids/therapeutic use , Flavonols/pharmacology , Flavonols/therapeutic use , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Molecular Docking Simulation , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/pharmacology , fms-Like Tyrosine Kinase 3/therapeutic use
14.
Bioorg Chem ; 121: 105675, 2022 04.
Article En | MEDLINE | ID: mdl-35182882

Fms-like tyrosine kinase 3 (FLT3) is considered a promising therapeutic target for acute myeloid leukemia (AML) in the clinical. However, monotherapy with FLT3 inhibitor is usually accompanied by drug resistance. Dual inhibitors might be therapeutically beneficial to patients with AML due to their ability to overcome drug resistance. Mitogen-activated protein kinase (MAPK)-interacting kinases (MNKs) phosphorylate eukaryotic translation initiation factor 4E (eIF4E), which brings together the RAS/RAF/ERK and PI3K/AKT/mTOR oncogenic pathways. Therefore, dual inhibition of FLT3 and MNK2 might have an additive effect against AML. Herein, a structure-based virtual screening approach was performed to identify dual inhibitors of FLT3 and MNK2 from the ChemDiv database. Compound K783-0308 was identified as a dual inhibitor of FLT3 and MNK2 with IC50 values of 680 and 406 nM, respectively. In addition, the compound showed selectivity for both FLT3 and MNK2 in a panel of 82 kinases. The structure-activity relationship analysis and common interactions revealed interactions between K783-0308 analogs and FLT3 and MNK2. Furthermore, K783-0308 inhibited MV-4-11 and MOLM-13 AML cell growth and induced G0/G1 cell cycle arrest. Taken together, the dual inhibitor K783-0308 showed promising results and can be potentially optimized as a lead compound for AML treatment.


Leukemia, Myeloid, Acute , fms-Like Tyrosine Kinase 3 , Apoptosis , Cell Line, Tumor , Cell Proliferation , Humans , Intracellular Signaling Peptides and Proteins , Leukemia, Myeloid, Acute/drug therapy , Mutation , Phosphatidylinositol 3-Kinases , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases
15.
Biomed Pharmacother ; 146: 112580, 2022 Feb.
Article En | MEDLINE | ID: mdl-34968920

The dysregulation of DYRK1A is implicated in many diseases such as cancer, diabetes, and neurodegenerative diseases. Alzheimer's disease is one of the most common neurodegenerative disease and has elevated interest in DYRK1A research. Overexpression of DYRK1A has been linked to the formation of tau aggregates. Currently, an effective therapeutic treatment that targets DYRK1A is lacking. A specific small-molecule inhibitor would further our understanding of the physiological role of DYRK1A in neurodegenerative diseases and could be presented as a possible therapeutic option. In this study, we identified pharmacological interactions within the DYRK1A active site and performed a structure-based virtual screening approach to identify a selective small-molecule inhibitor. Several compounds were selected in silico for enzymatic and cellular assays, yielding a novel inhibitor. A structure-activity relationship analysis was performed to identify areas of interactions for the compounds selected in this study. When tested in vitro, reduction of DYRK1A dependent phosphorylation of tau was observed for active compounds. The active compounds also improved tau turbidity, suggesting that these compounds could alleviate aberrant tau aggregation. Testing the active compound against a panel of kinases across the kinome revealed greater selectivity towards DYRK1A. Our study demonstrates a serviceable protocol that identified a novel and selective DYRK1A inhibitor with potential for further study in tau-related pathologies.


Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Cell Line , Phosphorylation , Structure-Activity Relationship , Tubulin/drug effects , tau Proteins/drug effects , Dyrk Kinases
16.
J Med Chem ; 64(24): 17824-17845, 2021 12 23.
Article En | MEDLINE | ID: mdl-34908406

Pragmatic insertion of pargyline, a LSD1 inhibitor, as a surface recognition part in the HDAC inhibitory pharmacophore was planned in pursuit of furnishing potent antiprostate cancer agents. Resultantly, compound 14 elicited magnificent cell growth inhibitory effects against the PC-3 and DU-145 cell lines and led to remarkable suppression of tumor growth in human prostate PC-3 and DU-145 xenograft nude mouse models. The outcome of the enzymatic assays ascertained that the substantial antiproliferative effects of compound 14 were mediated through HDAC6 isoform inhibition as well as selective MAO-A and LSD1 inhibition. Moreover, the signatory feature of LSD1 inhibition by 14 in the context of H3K4ME2 accumulation was clearly evident from the results of western blot analysis. Gratifyingly, hydroxamic acid 14 demonstrates good human hepatocytic stability and good oral bioavailability in rats and exhibits enough promise to emerge as a therapeutic for the treatment of prostate cancer in the near future.


Antineoplastic Agents/therapeutic use , Histone Deacetylase Inhibitors/therapeutic use , Histone Demethylases/antagonists & inhibitors , Pargyline/pharmacology , Prostatic Neoplasms/drug therapy , Histone Deacetylase Inhibitors/pharmacology , Humans , Male , Pargyline/therapeutic use
17.
Oncogenesis ; 10(5): 39, 2021 May 13.
Article En | MEDLINE | ID: mdl-33986242

Acute leukemia is a highly heterogeneous disease; therefore, combination therapy is commonly used for patient treatment. Drug-drug interaction is a major concern of combined therapy; hence, dual/multi-target inhibitors have become a dominant approach for cancer drug development. HDACs and HSP90 are involved in the activation of various oncogenic signaling pathways, including PI3K/AKT/mTOR, JAK/STAT, and RAF/MEK/ERK, which are also highly enriched in acute leukemia gene expression profiles. Therefore, we suggest that dual HDAC and HSP90 inhibitors could represent a novel therapeutic approach for acute leukemia. MPT0G449 is a dual effect inhibitor, and it showed cytotoxic effectiveness in acute leukemia cells. Molecular docking analysis indicated that MPT0G449 possessed dual HDAC and HSP90 inhibitory abilities. Furthermore, MPT0G449 induced G2 arrest and caspase-mediated cell apoptosis in acute leukemia cells. The oncogenic signaling molecules AKT, mTOR, STAT3, STAT5, MEK, and ERK were significantly downregulated after MPT0G449 treatment in HL-60 and MOLT-4 cells. In vivo xenograft models confirmed the antitumor activity and showed the upregulation of acetyl-histone H3 and HSP70, biomarkers of pan-HDAC and HSP90 inhibition, with MPT0G449 treatment. These findings suggest that the dual inhibition of HDAC and HSP90 can suppress the expression of oncogenic pathways in acute leukemia, and MPT0G449 represents a novel therapeutic for anticancer treatment.

18.
Eur J Med Chem ; 219: 113428, 2021 Jul 05.
Article En | MEDLINE | ID: mdl-33934008

A series of ring-opened dihydroxybenzamides have been designed and synthesized as heat shock protein 90 inhibitors. One of derivatives, compound 6b ((N-ethyl-2,4-dihydroxy-5-isopropyl-N-(pyridin-3-yl)benzamide)) demonstrated remarkable antiproliferative activity against in human KRAS mutant A549 and EGFR T790 M mutant H1975 lung cancer cell lines with GI50 values of 0.07 and 0.05 µM, respectively. It is also active against in other cancer cell lines, such as colorectal HCT116 (GI50 = 0.09 µM), liver Hep3B (GI50 = 0.20 µM) and breast MDA-MB-231 (GI50 = 0.09 µM), and shows no evidence of toxicity in normal cell line. Compound 6b has an IC50 of 110.18 nM in HSP90α inhibitory activity, slightly better than reference compound 1 (17-AAG, IC50 = 141.62 nM) and achieves the degradation of multiple HSP90 client proteins in a dose- and time-dependent manner and downstream signaling of Akt in a concentration- and time-dependent manner in the human A549 lung cancer cell line. In the Boyden chamber assay, compound 6b can efficiently inhibit the migration of A549 cells when compared to the reference compound 1. It also induce significant activity through the apoptotic pathway. Treatment with 6b showed no vision toxicity (IC50 > 10 µM) on 661w photoreceptor cells as compared to AUY922 (3a) with a 0.04 µM values of IC50 and has no effect in hERG test. In a bidirectional Caco-2 permeability assay, compound 6b was classified as a highly permeable compound which is not a substrate of efflux transporters. In a pharmacokinetic study in rats, 6b showed an F = 17.8% of oral bioavailability. The effect of metabolic stability of compound 6b in human hepatocytes showed a T1/2 of 67.59 min. Compound 6b (50 mg/kg, po, daily) exhibits antitumor activity with a 72% TGD (tumor growth delay) in human A549 lung xenograft. The combination of 6b and afatinib, orally administered, showed tumor growth suppression with 67.5% of TGI in lung H1975 xenograft model. Thus compound 6b is a lead compound for further development of potential agents to treat lung cancer.


Benzamides/chemistry , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Resorcinols/chemistry , Afatinib/therapeutic use , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Benzamides/metabolism , Benzamides/pharmacology , Benzamides/therapeutic use , Cell Cycle Checkpoints/drug effects , Cell Line , Cell Membrane Permeability/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Drug Design , Drug Screening Assays, Antitumor , Drug Stability , ErbB Receptors/metabolism , HSP90 Heat-Shock Proteins/metabolism , Half-Life , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Rats , Transplantation, Heterologous
19.
Biomed Pharmacother ; 138: 111485, 2021 Jun.
Article En | MEDLINE | ID: mdl-33740521

Aberrant alteration of epigenetic information disturbs chromatin structure and gene function, thereby facilitating cancer development. Several drugs targeting histone deacetylases (HDACs), a group of epigenetic enzymes, have been approved for treating hematologic malignancies in the clinic. However, patients who suffer from solid tumors often respond poorly to these drugs. In this study, we report a selective entinostat derivative, MPT0L184, with potent cancer-killing activity in both cell-based and mouse xenograft models. A time-course analysis of cell-cycle progression revealed that MPT0L184 treatment elicited an early onset of mitosis but prevented the division of cells with duplicated chromosomes. We show that MPT0L184 possessed potent inhibitory activity toward HDAC1 and 2, and its HDAC-inhibitory activity was required for initiating premature mitotic signaling. HDAC inhibition by MPT0L184 reduced WEE1 expression at the transcription level. In addition, MPT0L184 treatment also downregulated ATR-mediated CHK1 phosphorylation independent of HDAC inhibition. Furthermore, gastric cancer cells resistant to HDAC inhibitors were vulnerable to MPT0L184. Taken together, our study discovers MPT0L184 as a novel HDAC inhibitor that can trigger premature mitosis and potentially counteract drug resistance of cancers.


Benzamides/pharmacology , Cell Cycle Checkpoints/drug effects , Histone Deacetylase Inhibitors/pharmacology , Pyridines/pharmacology , Signal Transduction/drug effects , Animals , Benzamides/chemistry , Cell Cycle Checkpoints/physiology , Cell Line, Tumor , Dose-Response Relationship, Drug , Female , Histone Deacetylase Inhibitors/chemistry , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Mitosis/drug effects , Mitosis/physiology , Pyridines/chemistry , Signal Transduction/physiology , Tumor Burden/drug effects , Tumor Burden/physiology , Xenograft Model Antitumor Assays/methods
20.
Cell Biosci ; 11(1): 53, 2021 Mar 16.
Article En | MEDLINE | ID: mdl-33726836

BACKGROUND: The availability of a reliable tumor target for advanced colorectal cancer (CRC) therapeutic approaches is critical since current treatments are limited. Epidermal growth factor-like domain 6 (EGFL6) has been reported to be associated with cancer development. Here, we focused on the role of EGFL6 in CRC progression and its clinical relevance. In addition, an anti-EGFL6 antibody was generated by phage display technology to investigate its potential therapeutic efficacy in CRC. RESULTS: EGFL6 expression significantly increased in the colon tissues from CRC patients and mice showing spontaneous tumorigenesis, but not in normal tissue. Under hypoxic condition, EGFL6 expression was enhanced at both protein and transcript levels. Moreover, EGFL6 could promote cancer cell migration invasion, and proliferation of CRC cells via up-regulation of the ERK/ AKT pathway. EGFL6 also regulated cell migration, invasion, proliferation, and self-renewal through EGFR/αvß3 integrin receptors. Treatment with the anti-EGFL6 antibody EGFL6-E5-IgG showed tumor-inhibition and anti-metastasis abilities in the xenograft and syngeneic mouse models, respectively. Moreover, EGFL6-E5-IgG treatment had no adverse effect on angiogenesis and wound healing CONCLUSIONS: We demonstrated that EGFL6 plays a role in CRC tumorigenesis and tumor progression, indicating that EGFL6 is a potential therapeutic target worth further investigation.

...