Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 36
1.
Nat Commun ; 15(1): 3746, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702319

The neural basis of fear of heights remains largely unknown. In this study, we investigated the fear response to heights in male mice and observed characteristic aversive behaviors resembling human height vertigo. We identified visual input as a critical factor in mouse reactions to heights, while peripheral vestibular input was found to be nonessential for fear of heights. Unexpectedly, we found that fear of heights in naïve mice does not rely on image-forming visual processing by the primary visual cortex. Instead, a subset of neurons in the ventral lateral geniculate nucleus (vLGN), which connects to the lateral/ventrolateral periaqueductal gray (l/vlPAG), drives the expression of fear associated with heights. Additionally, we observed that a subcortical visual pathway linking the superior colliculus to the lateral posterior thalamic nucleus inhibits the defensive response to height threats. These findings highlight a rapid fear response to height threats through a subcortical visual and defensive pathway from the vLGN to the l/vlPAG.


Fear , Geniculate Bodies , Mice, Inbred C57BL , Superior Colliculi , Visual Pathways , Animals , Male , Fear/physiology , Mice , Geniculate Bodies/physiology , Superior Colliculi/physiology , Visual Pathways/physiology , Periaqueductal Gray/physiology , Neurons/physiology , Primary Visual Cortex/physiology , Visual Perception/physiology , Behavior, Animal/physiology
2.
Science ; 381(6661): 979-984, 2023 09.
Article En | MEDLINE | ID: mdl-37651513

Population size history is essential for studying human evolution. However, ancient population size history during the Pleistocene is notoriously difficult to unravel. In this study, we developed a fast infinitesimal time coalescent process (FitCoal) to circumvent this difficulty and calculated the composite likelihood for present-day human genomic sequences of 3154 individuals. Results showed that human ancestors went through a severe population bottleneck with about 1280 breeding individuals between around 930,000 and 813,000 years ago. The bottleneck lasted for about 117,000 years and brought human ancestors close to extinction. This bottleneck is congruent with a substantial chronological gap in the available African and Eurasian fossil record. Our results provide new insights into our ancestry and suggest a coincident speciation event.


Evolution, Molecular , Genome, Human , Population Dynamics , Humans , Black People/genetics , Black People/history , Genomics , Fossils , Population Dynamics/history , European People/genetics , European People/history , Asian/genetics , Asian/history
3.
Mol Biol Evol ; 40(6)2023 Jun 01.
Article En | MEDLINE | ID: mdl-37341536

Three prevalent SARS-CoV-2 variants of concern (VOCs) emerged and caused epidemic waves. It is essential to uncover advantageous mutations that cause the high transmissibility of VOCs. However, viral mutations are tightly linked, so traditional population genetic methods, including machine learning-based methods, cannot reliably detect mutations conferring a fitness advantage. In this study, we developed an approach based on the sequential occurrence order of mutations and the accelerated furcation rate in the pandemic-scale phylogenomic tree. We analyzed 3,777,753 high-quality SARS-CoV-2 genomic sequences and the epidemiology metadata using the Coronavirus GenBrowser. We found that two noncoding mutations at the same position (g.a28271-/u) may be crucial to the high transmissibility of Alpha, Delta, and Omicron VOCs although the noncoding mutations alone cannot increase viral transmissibility. Both mutations cause an A-to-U change at the core position -3 of the Kozak sequence of the N gene and significantly reduce the protein expression ratio of ORF9b to N. Using a convergent evolutionary analysis, we found that g.a28271-/u, S:p.P681H/R, and N:p.R203K/M occur independently on three VOC lineages, suggesting that coordinated changes of S, N, and ORF9b proteins are crucial to high viral transmissibility. Our results provide new insights into high viral transmissibility co-modulated by advantageous noncoding and nonsynonymous changes.


COVID-19 , COVID-19/genetics , SARS-CoV-2/genetics , Biological Evolution , Mutation , Pandemics
5.
ACS Omega ; 7(16): 13622-13628, 2022 Apr 26.
Article En | MEDLINE | ID: mdl-35559149

The semiconductor industry continues to shrink the device sizes while applying more complex shapes and using diverse materials, which requires parallel improvements in the quality of ultrapure reagents. The need for ultrapure reagents has led to ever-higher demands for the performance of analytical instruments used to detect ultratrace impurities. In this study, nonvolatile impurities in ultrapure reagents were quantified using a scanning mobility particle sizer (SMPS). The performances of three different sample introduction systems, i.e., an electrospray (ES), an aerosol generator with a heating chamber and a Nafion desolvation membrane (NB-II), and a MicroMist nebulizer with a heated cyclonic spray chamber and a three-stage Peltier-cooled desolvation system (MM-APEX), were evaluated for the lower limit of detection of a SMPS. The MM-APEX equipped with the SMPS was able to detect NaCl additives at a concentration of 100 parts per trillion (ppt, ng/L) in ultrapure water, which was approximately 104- and 102-fold lower than those of ES and NB-II, respectively. The practical application of MM-APEX with the SMPS for commercial isopropanol samples was also studied. The results clearly demonstrate that the impurity concentrations presented by the NaCl-equivalent concentrations among different sources of isopropanol were at the ppt to parts-to-billion (ppb) scale. The SMPS system equipped with MM-APEX is capable of recognizing impurities with concentrations ranging from tens ppt to thousands of parts per million (ppm), which is beneficial for an ultratrace analysis of nonvolatile impurities in semiconductor process chemicals.

6.
Hum Genet ; 141(2): 273-281, 2022 Feb.
Article En | MEDLINE | ID: mdl-35048190

Recombination is a major force that shapes genetic diversity. Determination of recombination rate is important and can theoretically be improved by increasing the sample size. However, it is nearly impossible to estimate recombination rates using traditional population genetics methods when the sample size is large because these methods are highly computationally demanding. In this study, we used a refined machine learning approach to estimate the recombination rate of the human genome using the UK10K human genomic dataset with 7,562 genomic sequences and its three subsets with 200, 400 and 2,000 genomic sequences. The estimation was performed under the human Out-of-Africa demographic model. We not only obtained an accurate human genetic map, but also found that the fluctuation of estimated recombination rate is reduced along the human genome when the sample size increases. The estimated UK10K recombination rate heterogeneity is less than that estimated from its subsets. Our results demonstrate how the sample size affects the estimated recombination rate, and analyses of a larger number of genomes result in a more precise estimation of recombination rate. The accurate genetic map based on UK10K data set is also expected to benefit other human biology researches.


Chromosome Mapping/methods , Genome, Human , Chromosome Mapping/statistics & numerical data , Databases, Genetic/statistics & numerical data , Genetics, Population , Humans , Machine Learning , Models, Genetic , Recombination, Genetic , Sample Size , Software , United Kingdom
7.
Brief Bioinform ; 23(2)2022 03 10.
Article En | MEDLINE | ID: mdl-35043153

Genomic epidemiology is important to study the COVID-19 pandemic, and more than two million severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomic sequences were deposited into public databases. However, the exponential increase of sequences invokes unprecedented bioinformatic challenges. Here, we present the Coronavirus GenBrowser (CGB) based on a highly efficient analysis framework and a node-picking rendering strategy. In total, 1,002,739 high-quality genomic sequences with the transmission-related metadata were analyzed and visualized. The size of the core data file is only 12.20 MB, highly efficient for clean data sharing. Quick visualization modules and rich interactive operations are provided to explore the annotated SARS-CoV-2 evolutionary tree. CGB binary nomenclature is proposed to name each internal lineage. The pre-analyzed data can be filtered out according to the user-defined criteria to explore the transmission of SARS-CoV-2. Different evolutionary analyses can also be easily performed, such as the detection of accelerated evolution and ongoing positive selection. Moreover, the 75 genomic spots conserved in SARS-CoV-2 but non-conserved in other coronaviruses were identified, which may indicate the functional elements specifically important for SARS-CoV-2. The CGB was written in Java and JavaScript. It not only enables users who have no programming skills to analyze millions of genomic sequences, but also offers a panoramic vision of the transmission and evolution of SARS-CoV-2.


COVID-19/epidemiology , COVID-19/virology , Public Health Surveillance/methods , SARS-CoV-2/genetics , Software , Web Browser , Computational Biology/methods , DNA Mutational Analysis , Databases, Genetic , Genome, Viral , Genomics , Humans , Molecular Epidemiology/methods , Molecular Sequence Annotation , Mutation
8.
Neurosci Bull ; 38(1): 29-46, 2022 Jan.
Article En | MEDLINE | ID: mdl-34523068

A large number of putative risk genes for autism spectrum disorder (ASD) have been reported. The functions of most of these susceptibility genes in developing brains remain unknown, and causal relationships between their variation and autism traits have not been established. The aim of this study was to predict putative risk genes at the whole-genome level based on the analysis of gene co-expression with a group of high-confidence ASD risk genes (hcASDs). The results showed that three gene features - gene size, mRNA abundance, and guanine-cytosine content - affect the genome-wide co-expression profiles of hcASDs. To circumvent the interference of these features in gene co-expression analysis, we developed a method to determine whether a gene is significantly co-expressed with hcASDs by statistically comparing the co-expression profile of this gene with hcASDs to that of this gene with permuted gene sets of feature-matched genes. This method is referred to as "matched-gene co-expression analysis" (MGCA). With MGCA, we demonstrated the convergence in developmental expression profiles of hcASDs and improved the efficacy of risk gene prediction. The results of analysis of two recently-reported ASD candidate genes, CDH11 and CDH9, suggested the involvement of CDH11, but not CDH9, in ASD. Consistent with this prediction, behavioral studies showed that Cdh11-null mice, but not Cdh9-null mice, have multiple autism-like behavioral alterations. This study highlights the power of MGCA in revealing ASD-associated genes and the potential role of CDH11 in ASD.


Autism Spectrum Disorder , Cadherins/genetics , Animals , Autism Spectrum Disorder/genetics , Brain , Gene Expression , Mice , Mice, Knockout
9.
Zool Res ; 43(1): 52-63, 2022 01 18.
Article En | MEDLINE | ID: mdl-34821086

The ability to sense temperature changes is crucial for mammalian survival. Mammalian thermal sensing is primarily carried out by thermosensitive transient receptor potential channels (Thermo-TRPs). Some mammals hibernate to survive cold winter conditions, during which time their body temperature fluctuates dramatically. However, the underlying mechanisms by which these mammals regulate thermal responses remain unclear. Using quantitative real-time polymerase chain reaction (qRT-PCR) and the Western blotting, we found that Myotis ricketti bats had high levels of heat-activated TRPs (e.g., TRPV1 and TRPV4) during torpor in winter and cold-activated TRPs (e.g., TRPM8 and TRPC5) during active states in summer. We also found that laboratory mice had high mRNA levels of cold-activated TRPs (e.g., Trpm8 and Trpc5) under relatively hot conditions (i.e., 40 °C). These data suggest that small mammals up-regulate the expression of cold-activated TRPs even under warm or hot conditions. Binding site analysis showed that some homeobox (HOX) transcription factors (TFs) regulate the expression of hot- and cold-activated TRP genes and that some TFs of the Pit-Oct-Unc (POU) family regulate warm-sensitive and cold-activated TRP genes. The dual-luciferase reporter assay results demonstrated that TFs HOXA9, POU3F1, and POU5F1 regulate TRPC5 expression, suggesting that Thermo-TRP genes are regulated by multiple TFs of the HOX and POU families at different levels. This study provides insights into the adaptive mechanisms underlying thermal sensing used by bats to survive hibernation.


Chiroptera , Hot Temperature , Seasons , TRPC Cation Channels , Animals , Chiroptera/genetics , Female , Hibernation/genetics , Male , Mice , TRPC Cation Channels/genetics , TRPV Cation Channels/genetics
10.
J Biol Chem ; 297(5): 101344, 2021 11.
Article En | MEDLINE | ID: mdl-34710372

Conversion of normal prion protein (PrPC) to the pathogenic PrPSc conformer is central to prion diseases such as Creutzfeldt-Jakob disease and scrapie; however, the detailed mechanism of this conversion remains obscure. To investigate how the N-terminal polybasic region of PrP (NPR) influences the PrPC-to-PrPSc conversion, we analyzed two PrP mutants: ΔN6 (deletion of all six amino acids in NPR) and Met4-1 (replacement of four positively charged amino acids in NPR with methionine). We found that ΔN6 and Met4-1 differentially impacted the binding of recombinant PrP (recPrP) to the negatively charged phospholipid 1-palmitoyl-2-oleoylphosphatidylglycerol, a nonprotein cofactor that facilitates PrP conversion. Both mutant recPrPs were able to form recombinant prion (recPrPSc) in vitro, but the convertibility was greatly reduced, with ΔN6 displaying the lowest convertibility. Prion infection assays in mammalian RK13 cells expressing WT or NPR-mutant PrPs confirmed these differences in convertibility, indicating that the NPR affects the conversion of both bacterially expressed recPrP and post-translationally modified PrP in eukaryotic cells. We also found that both WT and mutant recPrPSc conformers caused prion disease in WT mice with a 100% attack rate, but the incubation times and neuropathological changes caused by two recPrPSc mutants were significantly different from each other and from that of WT recPrPSc. Together, our results support that the NPR greatly influences PrPC-to-PrPSc conversion, but it is not essential for the generation of PrPSc. Moreover, the significant differences between ΔN6 and Met4-1 suggest that not only charge but also the identity of amino acids in NPR is important to PrP conversion.


Brain/metabolism , Mutation , PrPC Proteins/metabolism , PrPSc Proteins/metabolism , Prion Diseases/metabolism , Animals , Cell Line , Mice , PrPC Proteins/genetics , PrPSc Proteins/genetics , Prion Diseases/genetics , Rabbits
11.
Placenta ; 114: 14-21, 2021 10.
Article En | MEDLINE | ID: mdl-34418750

INTRODUCTION: The chorioallantoic placenta is a specific organ for placental mammals. However, the adaptive events during its emergence are still poorly investigated. METHODS: We scanned the chromosome X to detect the accelerated evolution in the ancestral lineage of placental mammals, and constructed 3D protein structure models of a candidate by homology modeling. RESULTS: Eight branch-specific accelerated regions were identified. Five of these regions (P=5.61×10-11 ~ 9.03×10-8) are located in the five exons of Nik-related kinase (Nrk), which is essential in placenta development and fetoplacental induction of labor. Nrk belongs to the germinal center kinase-IV subfamily with the overall similar protein structure; however, a new exon emerged in ancestors of placental mammals and its sequence has been conserved since then. Structure modelling of NRK suggests that the accelerated exons and the placental-mammal-specific exon (as a new loop) could change the enzymatic activity and the structure of placental mammal NRK. DISCUSSION: Since the new loop is surrounded by the accelerated protein regions, it is likely that the new loop occurred and shifted the function of NRK, and then the accelerated evolution of Nrk occurred to adapt the structure change caused by the new loop in the ancestral lineage of placental mammals. Overall, this work suggests that the fundamental process of placental development and fetoplacental induction of labor has been targeted by positive Darwinian selection.


Evolution, Molecular , Intracellular Signaling Peptides and Proteins/genetics , Placenta/metabolism , Protein Serine-Threonine Kinases/genetics , Animals , Eutheria , Female , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Phylogeny , Pregnancy , Protein Serine-Threonine Kinases/metabolism
12.
Reprod Biol ; 21(3): 100537, 2021 Sep.
Article En | MEDLINE | ID: mdl-34271244

The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin Motifs) enzymes are secreted metalloproteinases with major roles in development, morphogenesis, and tissue repair via the assembly and degradation of extracellular matrix (ECM). In this study, we investigated the role of ADAMTS18 in the development of the reproductive tract in female mice by phenotyping Adamts18 knockout (Adamts18-/-) mice. The results showed that Adamst18 mRNAs were abundantly expressed in vaginal epithelial cells and muscularis cells of the developing vagina. At the time of vaginal opening (5 weeks of age), about 41 % of Adamts18-/- females showed enlarged protrusions in the upper and middle parts of the vagina, reduced vaginal length, and simultaneously exhibited vaginal atresia. 6% Adamts18-/- females exhibited vaginal septum. Histological analyses revealed that the paired Mullerian ducts in ∼33 % female Adamts18-/- embryos failed to fuse at embryonic day 15.5 (E15.5) resulting in the formation of two vaginal cavities. Results of TUNEL assay and immunohistochemistry for caspase-3 showed that the number of apoptotic cells in the terminal portion of the vagina of 5-week-old Adamts18-/- females with vaginal atresia was significantly decreased. Adamts18-/- females also showed a significant decrease in serum estradiol E2 compared to age-matched Adamts18+/+ females. Results of qRT-PCR showed that the expression level of the anti-apoptosis gene Bcl-2 was significantly increased and that of the apoptosis-related gene Epha1 was decreased in the vagina of 5-week-old Adamts18-/- females. These results suggest that ADAMTS18 regulates vaginal opening through influencing the fusion of Mullerian ducts and apoptosis of vaginal cells in mice.


ADAMTS Proteins/metabolism , Epithelial Cells/physiology , Mullerian Ducts/growth & development , Vagina/physiology , ADAMTS Proteins/genetics , Animals , Apoptosis , Female , Gene Expression Regulation, Developmental , Mice , Mice, Knockout , Sexual Maturation/physiology , Tissue Culture Techniques , Vagina/cytology
13.
iScience ; 24(6): 102672, 2021 Jun 25.
Article En | MEDLINE | ID: mdl-34189436

Members of a disintegrin and metalloproteinases with thrombospondin motif (ADAMTS) family have been implicated in various vascular diseases. However, their functional roles in early embryonic vascular development are unknown. In this study, we showed that Adamts18 is highly expressed at E11.5-E14.5 in cells surrounding the embryonic aortic arch (AOAR) and the common carotid artery (CCA) during branchial arch artery development in mice. Adamts18 deficiency was found to cause abnormal development of AOAR, CCA, and the third and fourth branchial arch appendages, leading to hypoplastic carotid body, thymus, and variation of middle cerebral artery. Adamts18 was shown to affect the accumulation of extracellular matrix (ECM) components, in particular fibronectin (Fn), around AOAR and CCA. As a result of increased Fn accumulation, the Notch3 signaling pathway was activated to promote the differentiation of cranial neural crest cells (CNCCs) to vascular smooth muscle cells. These data indicate that Adamts18-mediated ECM homeostasis is crucial for the differentiation of CNCCs.

14.
iScience ; 23(9): 101472, 2020 Sep 25.
Article En | MEDLINE | ID: mdl-32882513

ADAMTSs (a disintegrin and metalloproteinase with thrombospondin motifs) are secreted metalloproteinases that play a major role in the assembly and degradation of the extracellular matrix (ECM). In this study, we show that ADAMTS18, produced by the epithelial cells of distal airways and mesenchymal cells in lung apex at early embryonic stages, serves as a morphogen in lung development. ADAMTS18 deficiency leads to reduced number and length of bronchi, tipped lung apexes, and dilated alveoli. These developmental defects worsen lipopolysaccharide-induced acute lung injury and bleomycin-induced lung fibrosis in adult Adamts18-deficient mice. ADAMTS18 deficiency also causes increased levels of fibrillin1 and fibrillin2, bronchial microfibril accumulation, decreased focal adhesion kinase signaling, and disruption of F-actin organization. Our findings indicate that ECM homeostasis mediated by ADAMTS18 is pivotal in airway branching morphogenesis.

15.
Pathogens ; 9(8)2020 Aug 13.
Article En | MEDLINE | ID: mdl-32823763

Prion disease is a group of transmissible neurodegenerative disorders affecting humans and animals. The prion hypothesis postulates that PrPSc, the pathogenic conformer of host-encoded prion protein (PrP), is the unconventional proteinaceous infectious agent called prion. Supporting this hypothesis, highly infectious prion has been generated in vitro with recombinant PrP plus defined non-protein cofactors and the synthetically generated prion (recPrPSc) is capable of causing prion disease in wild-type mice through intracerebral (i.c.) or intraperitoneal (i.p.) inoculation. Given that many of the naturally occurring prion diseases are acquired through oral route, demonstrating the capability of recPrPSc to cause prion disease via oral transmission is important, but has never been proven. Here we showed for the first time that oral ingestion of recPrPSc is sufficient to cause prion disease in wild-type mice, which was supported by the development of fatal neurodegeneration in exposed mice, biochemical and histopathological analyses of diseased brains, and second round transmission. Our results demonstrate the oral transmissibility of recPrPSc and provide the missing evidence to support that the in vitro generated recPrPSc recapitulates all the important properties of naturally occurring prions.

16.
Front Zool ; 17: 21, 2020.
Article En | MEDLINE | ID: mdl-32690984

BACKGROUND: The gut is the major organ for nutrient absorption and immune response in the body of animals. Although effects of fasting on the gut functions have been extensively studied in model animals (e.g. mice), little is known about the response of the gut to fasting in a natural condition (e.g. hibernation). During hibernation, animals endure the long term of fasting and hypothermia. RESULTS: Here we generated the first gut transcriptome in a wild hibernating bat (Rhinolophus ferrumequinum). We identified 1614 differentially expressed genes (DEGs) during four physiological states (Torpor, Arousal, Winter Active and Summer Active). Gene co-expression network analysis assigns 926 DEGs into six modules associated with Torpor and Arousal. Our results reveal that in response to the stress of luminal nutrient deficiency during hibernation, the gut helps to reduce food intake by overexpressing genes (e.g. CCK and GPR17) that regulate the sensitivity to insulin and leptin. At the same time, the gut contributes energy supply by overexpressing genes that increase capacity for ketogenesis (HMGCS2) and selective autophagy (TEX264). Furthermore, we identified separate sets of multiple DEGs upregulated in Torpor and Arousal whose functions are involved in innate immunity. CONCLUSION: This is the first gut transcriptome of a hibernating mammal. Our study identified candidate genes associated with regulation of food intake and enhance of innate immunity in the gut during hibernation. By comparing with previous studies, we found that two DEGs (CPE and HSPA8) were also significantly elevated during torpor in liver and brain of R. ferrumequinum and several DEGs (e.g. TXNIP and PDK1/4) were commonly upregulated during torpor in multiple tissues of different mammals. Our results support that shared expression changes may underlie the hibernation phenotype by most mammals.

17.
Cell Res ; 30(5): 408-420, 2020 05.
Article En | MEDLINE | ID: mdl-32238901

Social hierarchies emerged during evolution, and social rank influences behavior and health of individuals. However, the evolutionary mechanisms of social hierarchy are still unknown in amniotes. Here we developed a new method and performed a genome-wide screening for identifying regions with accelerated evolution in the ancestral lineage of placental mammals, where mammalian social hierarchies might have initially evolved. Then functional analyses were conducted for the most accelerated region designated as placental-accelerated sequence 1 (PAS1, P = 3.15 × 10-18). Multiple pieces of evidence show that PAS1 is an enhancer of the transcription factor gene Lhx2 involved in brain development. PAS1s isolated from various amniotes showed different cis-regulatory activity in vitro, and affected the expression of Lhx2 differently in the nervous system of mouse embryos. PAS1 knock-out mice lack social stratification. PAS1 knock-in mouse models demonstrate that PAS1s determine the social dominance and subordinate of adult mice, and that social ranks could even be turned over by mutated PAS1. All homozygous mutant mice had normal huddled sleeping behavior, motor coordination and strength. Therefore, PAS1-Lhx2 modulates social hierarchies and is essential for establishing social stratification in amniotes, and positive Darwinian selection on PAS1 plays pivotal roles in the occurrence of mammalian social hierarchies.


Hierarchy, Social , LIM-Homeodomain Proteins , Regulatory Sequences, Nucleic Acid , Social Evolution , Transcription Factors/genetics , Animals , Cattle , Chick Embryo , Chickens , Embryo, Mammalian , HEK293 Cells , Humans , LIM-Homeodomain Proteins/classification , LIM-Homeodomain Proteins/genetics , Macropodidae , Mice, Inbred C57BL , Mice, Knockout , Social Dominance
18.
Biochem Biophys Res Commun ; 521(4): 907-913, 2020 01 22.
Article En | MEDLINE | ID: mdl-31711643

ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin type I motifs) enzymes play an important role in various morphogenesis processes. To determine the functions of Adamts18 in the early stages of organogenesis, we created Adamts18 deficient zebrafish using morpholino antisense oligonucleotides (MO) to generate exon 3 skipped adamts18 mRNA transcripts. Results showed that Adamts18 deficiency in zebrafish embryos caused developmental defects, including expanded brain ventricle and hindbrain edema, eye defects, and accumulation of blood in the caudal vein. Adamts18 deficiency also led to impaired trunk angiogenesis and formation of the caudal vein plexus (CVP). Consequently, Adamts18 deficient zebrafish embryos exhibited incomplete formation of intersegment vessels (ISVs), disruption of the honeycomb structure of CVP, and reduced CVP area and loop number. Furthermore, Adamts18 deficiency resulted in impaired blood circulation in major trunk, caudal vein (CV), and common cardinal vein (CCV). These aberrant vascular phenotypes in mutant zebrafish embryos were shown to be associated with a decreased expression of multiple angiogenesis-related signaling genes, including slit/robo, dll4/Notch, cox2, and fgfr. These findings indicate the critical role of Adamts18 in the early stages of vascular network development.


Metalloendopeptidases/genetics , Neovascularization, Physiologic/genetics , Veins/embryology , Zebrafish Proteins/genetics , Zebrafish/embryology , ADAMTS Proteins , Animals , Animals, Genetically Modified , Blood Circulation/genetics , Embryo, Nonmammalian , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Metalloendopeptidases/metabolism , Oligonucleotides, Antisense/genetics , Xenopus Proteins/genetics , Zebrafish/genetics , Zebrafish Proteins/metabolism
19.
Front Cell Dev Biol ; 7: 205, 2019.
Article En | MEDLINE | ID: mdl-31620440

Newborn neurons in developing brains actively migrate from germinal zones to designated regions before being wired into functional circuits. The motility and trajectory of migrating neurons are regulated by both extracellular factors and intracellular signaling cascades. Defects in the molecular machinery of neuronal migration lead to mis-localization of affected neurons and are considered as an important etiology of multiple developmental disorders including epilepsy, dyslexia, schizophrenia (SCZ), and autism spectrum disorders (ASD). However, the mechanisms that link neuronal migration deficits to the development of these diseases remain elusive. This review focuses on neuronal migration deficits in ASD. From a translational perspective, we discuss (1) whether neuronal migration deficits are general neuropathological characteristics of ASD; (2) how the phenotypic heterogeneity of neuronal migration disorders is generated; (3) how neuronal migration deficits lead to functional defects of brain circuits; and (4) how therapeutic intervention of neuronal migration deficits can be a potential treatment for ASD.

20.
Mol Brain ; 12(1): 40, 2019 05 02.
Article En | MEDLINE | ID: mdl-31046797

Results of recent genome-wide association studies (GWAS) and whole genome sequencing (WGS) highlighted type II cadherins as risk genes for autism spectrum disorders (ASD). To determine whether these cadherins may be linked to the morphogenesis of ASD-relevant brain regions, in situ hybridization (ISH) experiments were carried out to examine the mRNA expression profiles of two ASD-associated cadherins, Cdh9 and Cdh11, in the developing cerebellum. During the first postnatal week, both Cdh9 and Cdh11 were expressed at high levels in segregated sub-populations of Purkinje cells in the cerebellum, and the expression of both genes was declined as development proceeded. Developmental expression of Cdh11 was largely confined to dorsal lobules (lobules VI/VII) of the vermis as well as the lateral hemisphere area equivalent to the Crus I and Crus II areas in human brains, areas known to mediate high order cognitive functions in adults. Moreover, in lobules VI/VII of the vermis, Cdh9 and Cdh11 were expressed in a complementary pattern with the Cdh11-expressing areas flanked by Cdh9-expressing areas. Interestingly, the high level of Cdh11 expression in the central domain of lobules VI/VII was correlated with a low level of expression of the Purkinje cell marker calbindin, coinciding with a delayed maturation of Purkinje cells in the same area. These findings suggest that these two ASD-associated cadherins may exert distinct but coordinated functions to regulate the wiring of ASD-relevant circuits in the cerebellum.


Autistic Disorder/genetics , Cadherins/genetics , Cerebellum/embryology , Cerebellum/pathology , Chromosome Segregation , Gene Expression Regulation, Developmental , Genetic Predisposition to Disease , Aging/genetics , Animals , Cadherins/metabolism , Calbindins/metabolism , Dendrites/metabolism , Mice, Inbred C57BL , Neuroglia/metabolism , Olivary Nucleus/metabolism , Purkinje Cells/metabolism , Risk Factors
...