Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Hum Brain Mapp ; 45(13): e70021, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39258437

ABSTRACT

Task-related studies have consistently reported that listening to speech sounds activate the temporal and prefrontal regions of the brain. However, it is not well understood how functional organization of auditory and language networks differ when processing speech sounds from its resting state form. The knowledge of language network organization in typically developing infants could serve as an important biomarker to understand network-level disruptions expected in infants with hearing impairment. We hypothesized that topological differences of language networks can be characterized using functional connectivity measures in two experimental conditions (1) complete silence (resting) and (2) in response to repetitive continuous speech sounds (steady). Thirty normal-hearing infants (14 males and 16 females, age: 7.8 ± 4.8 months) were recruited in this study. Brain activity was recorded from bilateral temporal and prefrontal regions associated with speech and language processing for two experimental conditions: resting and steady states. Topological differences of functional language networks were characterized using graph theoretical analysis. The normalized global efficiency and clustering coefficient were used as measures of functional integration and segregation, respectively. We found that overall, language networks of infants demonstrate the economic small-world organization in both resting and steady states. Moreover, language networks exhibited significantly higher functional integration and significantly lower functional segregation in resting state compared to steady state. A secondary analysis that investigated developmental effects of infants aged 6-months or below and above 6-months revealed that such topological differences in functional integration and segregation across resting and steady states can be reliably detected after the first 6-months of life. The higher functional integration observed in resting state suggests that language networks of infants facilitate more efficient parallel information processing across distributed language regions in the absence of speech stimuli. Moreover, higher functional segregation in steady state indicates that the speech information processing occurs within densely interconnected specialized regions in the language network.


Subject(s)
Connectome , Nerve Net , Spectroscopy, Near-Infrared , Speech Perception , Humans , Female , Male , Infant , Nerve Net/diagnostic imaging , Nerve Net/physiology , Speech Perception/physiology , Connectome/methods , Prefrontal Cortex/physiology , Prefrontal Cortex/diagnostic imaging , Language
2.
Article in English | MEDLINE | ID: mdl-38083703

ABSTRACT

Resting-state functional connectivity is a promising tool for understanding and characterizing brain network architecture. However, obtaining uninterrupted long recording of resting-state data is challenging in many clinically relevant populations. Moreover, the interpretation of connectivity results may heavily depend on the data length and functional connectivity measure used. We compared the performance of three frequency-domain connectivity measures: magnitude-squared, wavelet and multitaper coherence; and the effect of data length ranging from 3 to 9 minutes. Performance was characterized by distinguishing two groups of channel pairs with known different connectivity strengths. While all methods considered improved the ability to distinguish the two groups with increasing data lengths, wavelet coherence performed best for the shortest time window of 3 minutes. Knowledge of which measure is more reliably used when shorter fNIRS recordings are available could make the utility of functional connectivity biomarkers more feasible in clinical populations of interest.


Subject(s)
Brain Mapping , Brain , Brain/diagnostic imaging , Brain Mapping/methods , Spectrum Analysis
3.
J Neural Eng ; 20(1)2023 02 24.
Article in English | MEDLINE | ID: mdl-36763991

ABSTRACT

Objective.Hearing is an important sensory function that plays a key role in how children learn to speak and develop language skills. Although previous neuroimaging studies have established that much of brain network maturation happens in early childhood, our understanding of the developmental trajectory of language areas is still very limited. We hypothesized that typical development trajectory of language areas in early childhood could be established by analyzing the changes of functional connectivity in normal hearing infants at different ages using functional near-infrared spectroscopy.Approach.Resting-state data were recorded from two bilateral temporal and prefrontal regions associated with language processing by measuring the relative changes of oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) concentrations. Connectivity was calculated using magnitude-squared coherence of channel pairs located in (a) inter-hemispheric homologous and (b) intra-hemispheric brain regions to assess connectivity between homologous regions across hemispheres and two regions of interest in the same hemisphere, respectively.Main results.A linear regression model fitted to the age vs coherence of inter-hemispheric homologous test group revealed a significant coefficient of determination for both HbO (R2= 0.216,p= 0.0169) and HbR (R2= 0.206,p= 0.0198). A significant coefficient of determination was also found for intra-hemispheric test group for HbO (R2= 0.237,p= 0.0117) but not for HbR (R2= 0.111,p= 0.0956).Significance.The findings from HbO data suggest that both inter-hemispheric homologous and intra-hemispheric connectivity between primary language regions significantly strengthen with age in the first year of life. Mapping out the developmental trajectory of primary language areas of normal hearing infants as measured by functional connectivity could potentially allow us to better understand the altered connectivity and its effects on language delays in infants with hearing impairments.


Subject(s)
Brain , Spectroscopy, Near-Infrared , Child , Humans , Infant , Child, Preschool , Spectroscopy, Near-Infrared/methods , Brain/metabolism , Brain Mapping/methods , Language , Hemoglobins , Magnetic Resonance Imaging
4.
Neurophotonics ; 9(1): 015001, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35071689

ABSTRACT

Significance: Functional near-infrared spectroscopy (fNIRS) is a neuroimaging tool that can measure resting-state functional connectivity; however, non-neuronal components present in fNIRS signals introduce false discoveries in connectivity, which can impact interpretation of functional networks. Aim: We investigated the effect of short channel correction on resting-state connectivity by removing non-neuronal signals from fNIRS long channel data. We hypothesized that false discoveries in connectivity can be reduced, hence improving the discriminability of functional networks of known, different connectivity strengths. Approach: A principal component analysis-based short channel correction technique was applied to resting-state data of 10 healthy adult subjects. Connectivity was analyzed using magnitude-squared coherence of channel pairs in connectivity groups of homologous and control brain regions, which are known to differ in connectivity. Results: By removing non-neuronal components using short channel correction, significant reduction of coherence was observed for oxy-hemoglobin concentration changes in frequency bands associated with resting-state connectivity that overlap with the Mayer wave frequencies. The results showed that short channel correction reduced spurious correlations in connectivity measures and improved the discriminability between homologous and control groups. Conclusions: Resting-state functional connectivity analysis with short channel correction performs better than without correction in its ability to distinguish functional networks with distinct connectivity characteristics.

SELECTION OF CITATIONS
SEARCH DETAIL