Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(1)2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38202514

ABSTRACT

Ultraviolet (UV) photodetectors are key devices required in the industrial, military, space, environmental, and biological fields. The Schottky barrier (SB)-MOSFET, with its high hole and electron barrier, and given its extremely low dark current, has broad development prospects in the optoelectronics field. We analyze the effects of trap states on the output characteristics of an inversion mode n-channel GaN SB-MOSFET using TCAD simulations. At the oxide/GaN interface below the gate, it was demonstrated that shallow donor-like traps were responsible for degrading the subthreshold swing (SS) and off-state current density (Ioff), while deep donor-like traps below the Fermi energy level were insignificant. In addition, shallow acceptor-like traps shifted the threshold voltage (Vt) positively and deteriorated the SS and on-state current density (Ion), while deep acceptor-like traps acted on a fixed charge. The output characteristics of the GaN SB-MOSFET were related to the resistive GaN path and the tunneling rate due to the traps at the metal (source, drain)/GaN interface. For the UV responses, the main mechanism for the negative Vt shift and the increases in the Ion and spectral responsivity was related to the photo-gating effect caused by light-generated holes trapped in the shallow trap states. These results will provide insights for UV detection technology and for a high-performance monolithic integration of the GaN SB-MOSFET.

2.
Sensors (Basel) ; 21(12)2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34205761

ABSTRACT

Asymmetric metal-semiconductor-metal (MSM) aluminum gallium nitride (AlGaN) UV sensors with 24% Al were fabricated using a selective annealing technique that dramatically reduced the dark current density and improved the ohmic behavior and performance compared to a non-annealed sensor. Its dark current density at a bias of -2.0 V and UV-to-visible rejection ratio (UVRR) at a bias of -7.0 V were 8.5 × 10-10 A/cm2 and 672, respectively, which are significant improvements over a non-annealed sensor with a dark current density of 1.3 × 10-7 A/cm2 and UVRR of 84, respectively. The results of a transmission electron microscopy analysis demonstrate that the annealing process caused interdiffusion between the metal layers; the contact behavior between Ti/Al/Ni/Au and AlGaN changed from rectifying to ohmic behavior. The findings from an X-ray photoelectron spectroscopy analysis revealed that the O 1s binding energy peak intensity associated with Ga oxide, which causes current leakage from the AlGaN surface, decreased from around 846 to 598 counts/s after selective annealing.

SELECTION OF CITATIONS
SEARCH DETAIL