Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
J Clin Invest ; 133(23)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37815865

ABSTRACT

BACKGROUNDPemphigus, a rare autoimmune bullous disease mediated by antidesmoglein autoantibodies, can be controlled with systemic medication like rituximab and high-dose systemic corticosteroids combined with immunosuppressants. However, some patients continue to experience chronically recurrent blisters in a specific area and require long-term maintenance systemic therapy.METHODSSkin with chronic blisters was obtained from patients with pemphigus. Immunologic properties of the skin were analyzed by immunofluorescence staining, bulk and single-cell RNA and TCR sequencing, and a highly multiplex imaging technique known as CO-Detection by indEXing (CODEX). Functional analyses were performed by flow cytometry and bulk RNA-Seq using peripheral blood from healthy donors. Intralesional corticosteroid was injected into patient skin, and changes in chronically recurrent blisters were observed.RESULTSWe demonstrated the presence of skin tertiary lymphoid structures (TLSs) with desmoglein-specific B cells in chronic blisters from patients with pemphigus. In the skin TLSs, CD4+ T cells predominantly produced CXCL13. These clonally expanded CXCL13+CD4+ T cells exhibited features of activated Th1-like cells and downregulated genes associated with T cell receptor-mediated signaling. Tregs are in direct contact with CXCL13+CD4+ memory T cells and increased CXCL13 production of CD4+ T cells through IL-2 consumption and TGF-ß stimulation. Finally, intralesional corticosteroid injection improved chronic blisters and reduced skin TLSs in patients with pemphigus.CONCLUSIONThrough this study we conclude that skin TLSs are associated with the persistence of chronically recurrent blisters in patients with pemphigus, and the microenvironmental network involving CXCL13+CD4+ T cells and Tregs within these structures plays an important role in CXCL13 production.TRIAL REGISTRATIONClinicalTrials.gov NCT04509570.FUNDINGThis work was supported by National Research Foundation of South Korea (NRF-2021R1C1C1007179) and Korea Drug Development Fund, which is funded by Ministry of Science and ICT; Ministry of Trade, Industry, and Energy; and Ministry of Health and Welfare (grant RS-2022-00165917).


Subject(s)
Autoimmune Diseases , Pemphigus , Humans , Adrenal Cortex Hormones , Autoantibodies , Autoimmune Diseases/drug therapy , Blister/drug therapy , CD4-Positive T-Lymphocytes , Chemokine CXCL13 , Desmoglein 3 , Pemphigus/drug therapy
2.
Trends Immunol ; 44(10): 766-781, 2023 10.
Article in English | MEDLINE | ID: mdl-37690962

ABSTRACT

Regulatory T (Treg) cells play vital roles in immune homeostasis and response, including discrimination between self- and non-self-antigens, containment of immunopathology, and inflammation resolution. These diverse functions are orchestrated by cellular circuits involving Tregs and other cell types across space and time. Despite dramatic progress in our understanding of Treg biology, a quantitative framework capturing how Treg-containing circuits give rise to these diverse functions is lacking. Here, we propose that different facets of Treg function can be interpreted as distinct operating regimes of the same underlying circuit. We discuss how a systems immunology approach, involving quantitative experiments, computational modeling, and machine learning, can advance our understanding of Treg function, and help identify general operating and design principles underlying immune regulation.


Subject(s)
Antigens , T-Lymphocytes, Regulatory , Humans , Antigens/metabolism
3.
Biomedicines ; 11(8)2023 Aug 19.
Article in English | MEDLINE | ID: mdl-37626805

ABSTRACT

Warfarin has a narrow therapeutic window and high intra- and inter-individual variability. Considering that many published papers on genotype-guided dosing are derived from European populations, the aim of this study was to investigate novel genetic variants associated with the variability of stable warfarin dose in the Korean population with cardiac valve replacement, using the GWAS approach. This retrospective cohort study was performed from January 1982 to December 2020 at the Severance Cardiovascular Hospital of Yonsei University College of Medicine. GWAS was performed to identify associations between genotypes and the warfarin maintenance dose, by comparing the allele frequency of genetic variants between individuals. Then, the extent of genetic and non-genetic factors on the dose variability was determined by multivariable regression analysis. The study enrolled 214 participants, and the most robust signal cluster was detected on chromosome 16 around VKORC1. Followed by VKORC1, three novel variants (NKX2-6 rs310279, FRAS1 rs4386623, and FAM201A rs1890109) showed an association with stable warfarin dose requirement in univariate analysis. The algorithm was constructed by using multivariable analysis that includes genetic and non-genetic factors, and it could explain 58.5% of the variations in stable warfarin doses. In this variability, VKORC1 rs9934438 and FRAS1 rs4386623 accounted for 33.0% and 9.9%, respectively. This GWAS analysis identified the fact that three novel variants (NKX2-6 rs310279, FRAS1 rs4386623, and FAM201A rs1890109) were associated with stable warfarin doses. Additional research is necessary to validate the results and establish personalized treatment strategies for the Korean population.

4.
bioRxiv ; 2023 Jun 18.
Article in English | MEDLINE | ID: mdl-37503101

ABSTRACT

Genetic variants associated with human autoimmune diseases commonly map to non-coding control regions, particularly enhancers that function selectively in immune cells and fine-tune gene expression within a relatively narrow range of values. How such modest, cell-type-selective changes can meaningfully shape organismal disease risk remains unclear. To explore this issue, we experimentally manipulated species-conserved enhancers within the disease-associated IL2RA locus and studied accompanying changes in the progression of autoimmunity. Perturbing distinct enhancers with restricted activity in conventional T cells (Tconvs) or regulatory T cells (Tregs)-two functionally antagonistic T cell subsets-caused only modest, cell-type-selective decreases in IL2ra expression parameters. However, these same perturbations had striking and opposing effects in vivo , completely preventing or severely accelerating disease in a murine model of type 1 diabetes. Quantitative tissue imaging and computational modelling revealed that each enhancer manipulation impinged on distinct IL-2-dependent feedback circuits. These imbalances altered the intracellular signaling and intercellular communication dynamics of activated Tregs and Tconvs, producing opposing spatial domains that amplified or constrained ongoing autoimmune responses. These findings demonstrate how subtle changes in gene regulation stemming from non-coding variation can propagate across biological scales due to non-linearities in intra- and intercellular feedback circuitry, dramatically shaping disease risk at the organismal level.

5.
Sci Rep ; 12(1): 22411, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36575218

ABSTRACT

The early detection of graft failure in pediatric liver transplantation is crucial for appropriate intervention. Graft failure is associated with numerous perioperative risk factors. This study aimed to develop an individualized predictive model for 90-days graft failure in pediatric liver transplantation using machine learning methods. We conducted a single-center retrospective cohort study. A total of 87 liver transplantation cases performed in patients aged < 12 years at the Severance Hospital between January 2010 and September 2020 were included as data samples. Preoperative conditions of recipients and donors, intraoperative care, postoperative serial laboratory parameters, and events observed within seven days of surgery were collected as features. A least absolute shrinkage and selection operator (LASSO) -based method was used for feature selection to overcome the high dimensionality and collinearity of variables. Among 146 features, four variables were selected as the resultant features, namely, preoperative hepatic encephalopathy, sodium level at the end of surgery, hepatic artery thrombosis, and total bilirubin level on postoperative day 7. These features were selected from different times and represent distinct clinical aspects. The model with logistic regression demonstrated the best prediction performance among various machine learning methods tested (area under the receiver operating characteristic curve (AUROC) = 0.898 and area under the precision-recall curve (AUPR) = 0.882). The risk scoring system developed based on the logistic regression model showed an AUROC of 0.910 and an AUPR of 0.830. Together, the prediction of graft failure in pediatric liver transplantation using the proposed machine learning model exhibited superior discrimination power and, therefore, can provide valuable information to clinicians for their decision making during the postoperative management of the patients.


Subject(s)
Liver Transplantation , Humans , Child , Retrospective Studies , Liver Transplantation/adverse effects , Biomarkers , Risk Factors , Machine Learning
7.
J Pers Med ; 12(7)2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35887525

ABSTRACT

The incidence of major hemorrhage and transfusion during liver transplantation has decreased significantly over the past decade, but major bleeding remains a common expectation. Massive intraoperative hemorrhage during liver transplantation can lead to mortality or reoperation. This study aimed to develop machine learning models for the prediction of massive hemorrhage and a scoring system which is applicable to new patients. Data were retrospectively collected from patients aged >18 years who had undergone liver transplantation. These data included emergency information, donor information, demographic data, preoperative laboratory data, the etiology of hepatic failure, the Model for End-stage Liver Disease (MELD) score, surgical history, antiplatelet therapy, continuous renal replacement therapy (CRRT), the preoperative dose of vasopressor, and the estimated blood loss (EBL) during surgery. The logistic regression model was one of the best-performing machine learning models. The most important factors for the prediction of massive hemorrhage were the disease etiology, activated partial thromboplastin time (aPTT), operation duration, body temperature, MELD score, mean arterial pressure, serum creatinine, and pulse pressure. The risk-scoring system was developed using the odds ratios of these factors from the logistic model. The risk-scoring system showed good prediction performance and calibration (AUROC: 0.775, AUPR: 0.753).

8.
Pharmaceutics ; 14(5)2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35631500

ABSTRACT

Chemotherapy often induces severe neutropenia due to the myelosuppressive effect. While predictive pharmacokinetic (PK)/pharmacodynamic (PD) models of absolute neutrophil count (ANC) after anticancer drug administrations have been developed, their deployments to routine clinics have been limited due to the unavailability of PK data and sparseness of PD (or ANC) data. Here, we sought to develop a model describing temporal changes of ANC in non-small cell lung cancer patients receiving (i) combined chemotherapy of paclitaxel and cisplatin and (ii) granulocyte colony stimulating factor (G-CSF) treatment when needed, under such limited circumstances. Maturation of myelocytes into blood neutrophils was described by transit compartments with negative feedback. The K-PD model was employed for drug effects with drug concentration unavailable and the constant model for G-CSF effects. The fitted model exhibited reasonable goodness of fit and parameter estimates. Covariate analyses revealed that ANC decreased in those without diabetes mellitus and female patients. Using the final model obtained, an R Shiny web-based application was developed, which can visualize predicted ANC profiles and associated risk of severe neutropenia for a new patient. Our model and application can be used as a supportive tool to identify patients at the risk of grade 4 neutropenia early and suggest dose reduction.

9.
Anesth Analg ; 134(1): 114-122, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34673667

ABSTRACT

BACKGROUND: Aspiration pneumonia after endoscopic submucosal dissection (ESD) is rare, but can be fatal. We aimed to investigate risk factors and develop a simple risk scoring system for aspiration pneumonia. METHODS: We retrospectively reviewed medical records of 7833 patients who underwent gastric ESD for gastric neoplasm under anesthesiologist-directed sedation. Candidate risk factors were screened and assessed for significance using a least absolute shrinkage and selection operator (LASSO)-based method. Top significant factors were incorporated into a multivariable logistic regression model, whose prediction performance was compared with those of other machine learning models. The final risk scoring system was created based on the estimated odds ratios of the logistic regression model. RESULTS: The incidence of aspiration pneumonia was 1.5%. The logistic regression model showed comparable performance to the best predictive model, extreme gradient boost (area under receiver operating characteristic curve [AUROC], 0.731 vs 0.740). The estimated odds ratios were subsequently used for the development of the clinical scoring system. The final scoring system exhibited an AUROC of 0.730 in the test dataset with risk factors: age (≥70 years, 4 points), male sex (8 points), body mass index (≥27 kg/m2, 4 points), procedure time (≥80 minutes, 5 points), lesion in the lower third of the stomach (5 points), tumor size (≥10 mm, 3 points), recovery time (≥35 minutes, 4 points), and desaturation during ESD (9 points). For patients with total scores ranging between 0 and 33 points, aspiration pneumonia probabilities spanned between 0.1% and 17.9%. External validation using an additional cohort of 827 patients yielded AUROCs of 0.698 for the logistic regression model and 0.680 for the scoring system. CONCLUSIONS: Our simple risk scoring system has 8 predictors incorporating patient-, procedure-, and sedation-related factors. This system may help clinicians to stratify patients at risk of aspiration pneumonia after ESD.


Subject(s)
Endoscopic Mucosal Resection/adverse effects , Pneumonia, Aspiration/diagnosis , Pneumonia, Aspiration/etiology , Risk Assessment/standards , Stomach Neoplasms/complications , Stomach Neoplasms/surgery , Aged , Area Under Curve , Female , Humans , Incidence , Machine Learning , Male , Middle Aged , Multivariate Analysis , Postoperative Complications , Predictive Value of Tests , Probability , ROC Curve , Retrospective Studies , Risk , Risk Factors , Stomach/surgery
10.
J Transl Med ; 19(1): 307, 2021 07 16.
Article in English | MEDLINE | ID: mdl-34271916

ABSTRACT

BACKGROUND: Several predictive factors for chronic kidney disease (CKD) following radical nephrectomy (RN) or partial nephrectomy (PN) have been identified. However, early postoperative laboratory values were infrequently considered as potential predictors. Therefore, this study aimed to develop predictive models for CKD 1 year after RN or PN using early postoperative laboratory values, including serum creatinine (SCr) levels, in addition to preoperative and intraoperative factors. Moreover, the optimal SCr sampling time point for the best prediction of CKD was determined. METHODS: Data were retrospectively collected from patients with renal cell cancer who underwent laparoscopic or robotic RN (n = 557) or PN (n = 999). Preoperative, intraoperative, and postoperative factors, including laboratory values, were incorporated during model development. We developed 8 final models using information collected at different time points (preoperative, postoperative day [POD] 0 to 5, and postoperative 1 month). Lastly, we combined all possible subsets of the developed models to generate 120 meta-models. Furthermore, we built a web application to facilitate the implementation of the model. RESULTS: The magnitude of postoperative elevation of SCr and history of CKD were the most important predictors for CKD at 1 year, followed by RN (compared to PN) and older age. Among the final models, the model using features of POD 4 showed the best performance for correctly predicting the stages of CKD at 1 year compared to other models (accuracy: 79% of POD 4 model versus 75% of POD 0 model, 76% of POD 1 model, 77% of POD 2 model, 78% of POD 3 model, 76% of POD 5 model, and 73% in postoperative 1 month model). Therefore, POD 4 may be the optimal sampling time point for postoperative SCr. A web application is hosted at https://dongy.shinyapps.io/aki_ckd . CONCLUSIONS: Our predictive model, which incorporated postoperative laboratory values, especially SCr levels, in addition to preoperative and intraoperative factors, effectively predicted the occurrence of CKD 1 year after RN or PN and may be helpful for comprehensive management planning.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Renal Insufficiency, Chronic , Aged , Carcinoma, Renal Cell/surgery , Creatinine , Glomerular Filtration Rate , Humans , Kidney Neoplasms/surgery , Nephrectomy , Retrospective Studies
11.
Cell ; 184(15): 3981-3997.e22, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34157301

ABSTRACT

A fraction of mature T cells can be activated by peripheral self-antigens, potentially eliciting host autoimmunity. We investigated homeostatic control of self-activated T cells within unperturbed tissue environments by combining high-resolution multiplexed and volumetric imaging with computational modeling. In lymph nodes, self-activated T cells produced interleukin (IL)-2, which enhanced local regulatory T cell (Treg) proliferation and inhibitory functionality. The resulting micro-domains reciprocally constrained inputs required for damaging effector responses, including CD28 co-stimulation and IL-2 signaling, constituting a negative feedback circuit. Due to these local constraints, self-activated T cells underwent transient clonal expansion, followed by rapid death ("pruning"). Computational simulations and experimental manipulations revealed the feedback machinery's quantitative limits: modest reductions in Treg micro-domain density or functionality produced non-linear breakdowns in control, enabling self-activated T cells to subvert pruning. This fine-tuned, paracrine feedback process not only enforces immune homeostasis but also establishes a sharp boundary between autoimmune and host-protective T cell responses.


Subject(s)
Feedback, Physiological , Homeostasis/immunology , Lymphocyte Activation/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Autoantigens/immunology , CD4-Positive T-Lymphocytes/immunology , Cell Proliferation , Interleukin-2/metabolism , Membrane Microdomains/metabolism , Mice, Inbred C57BL , Models, Immunological , Paracrine Communication , Signal Transduction
12.
Cell Syst ; 4(4): 379-392.e12, 2017 04 26.
Article in English | MEDLINE | ID: mdl-28365150

ABSTRACT

Cell-to-cell variation in gene expression and the propagation of such variation (PoV or "noise propagation") from one gene to another in the gene network, as reflected by gene-gene correlation across single cells, are commonly observed in single-cell transcriptomic studies and can shape the phenotypic diversity of cell populations. While gene network "rewiring" is known to accompany cellular adaptation to different environments, how PoV changes between environments and its underlying regulatory mechanisms are less understood. Here, we systematically explored context-dependent PoV among genes in human macrophages, utilizing different cytokines as natural perturbations of multiple molecular parameters that may influence PoV. Our single-cell, epigenomic, computational, and stochastic simulation analyses reveal that environmental adaptation can tune PoV to potentially shape cellular heterogeneity by changing parameters such as the degree of phosphorylation and transcription factor-chromatin interactions. This quantitative tuning of PoV may be a widespread, yet underexplored, property of cellular adaptation to distinct environments.


Subject(s)
Gene Regulatory Networks , Genetic Variation , Macrophages/physiology , Computer Simulation , Gene Expression , Gene Expression Regulation , Humans , Interleukin-10/genetics , Interleukin-10/metabolism , Interleukin-10/physiology , Stochastic Processes
13.
Biopharm Drug Dispos ; 31(8-9): 443-9, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20809476

ABSTRACT

A diabetic patient may suffer simultaneously from cardiovascular disease; thus, lipid-lowering or anti-hypertensive agents could be given together with nateglinide. The pharmacokinetics of nateglinide were investigated in the presence and absence of HMG-CoA reductase inhibitors (fluvastatin, lovastatin) and calcium channel blockers (verapamil, nifedipine) in rabbits. A pharmacokinetic modeling approach was used to quantify the effects of the drugs that significantly influenced the pharmacokinetics of nateglinide. Fluvastatin and nifedipine shifted the time course of serum nateglinide concentrations upwards; there was no significant change with verapamil or lovastatin. The C(max) and AUC(inf) increased 1.5- (p<0.05) and 1.3-fold in the presence of fluvastatin and 1.8- (p<0.01) and 2.4-fold (p<0.01) in the presence of nifedipine, respectively. In a simultaneous nonlinear regression, fluvastatin and nifedipine decreased the elimination rate constant, by 76% and 32%, respectively. Fluvastatin and nifedipine increased the systemic exposure of nateglinide in rabbits, probably due to their inhibitory action on the metabolism of nateglinide by CYP2C5 (human CYP2C9). The concomitant use of fluvastatin and/or nifedipine with nateglinide is quite likely; therefore, the clinical consequences of long-term treatments must be considered.


Subject(s)
Calcium Channel Blockers/pharmacology , Cyclohexanes/pharmacokinetics , Diabetes Mellitus, Type 2/drug therapy , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hypoglycemic Agents/pharmacokinetics , Phenylalanine/analogs & derivatives , Animals , Area Under Curve , Aryl Hydrocarbon Hydroxylases , Calcium Channel Blockers/metabolism , Calcium Channel Blockers/pharmacokinetics , Cyclohexanes/blood , Cyclohexanes/metabolism , Cyclohexanes/pharmacology , Cytochrome P-450 CYP2C9 , Cytochrome P450 Family 2 , Drug Interactions , Fatty Acids, Monounsaturated/metabolism , Fatty Acids, Monounsaturated/pharmacokinetics , Fatty Acids, Monounsaturated/pharmacology , Fluvastatin , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacokinetics , Hypoglycemic Agents/blood , Hypoglycemic Agents/metabolism , Hypoglycemic Agents/pharmacology , Indoles/metabolism , Indoles/pharmacokinetics , Indoles/pharmacology , Lovastatin/metabolism , Lovastatin/pharmacokinetics , Lovastatin/pharmacology , Male , Nateglinide , Nifedipine/metabolism , Nifedipine/pharmacokinetics , Nifedipine/pharmacology , Phenylalanine/blood , Phenylalanine/metabolism , Phenylalanine/pharmacokinetics , Phenylalanine/pharmacology , Rabbits , Steroid 21-Hydroxylase/metabolism , Verapamil/metabolism , Verapamil/pharmacokinetics , Verapamil/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...