Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 329
Filter
3.
Mol Ther ; 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39342428

ABSTRACT

G2 and S phase-expressed protein 1 (GTSE1) has been implicated in the development of pulmonary fibrosis (PF); however, its biological function, molecular mechanism, and potential clinical implications remain unknown. Here, we explored the genomic data of patients with idiopathic PF (IPF) and found that GTSE1 expression is elevated in their lung tissues, but rarely expressed in normal lung tissues. Thus, we explored the biological role and downstream events of GTSE1 using IPF patient tissues and PF mouse models. The comprehensive bioinformatics analyses suggested that the increase of GTSE1 in IPF is linked to the enhanced gene signature for the epithelial-to-mesenchymal transition (EMT), leading us to investigate the potential interaction between GTSE1 and EMT transcription factors. GTSE1 preferentially binds to the less stable form of zinc-finger E-box-binding homeobox 1 (ZEB1), the unphosphorylated form at Ser585, inhibiting ZEB1 degradation. Consistently, the ZEB1 protein level in IPF patient and PF mouse tissues correlates with the GTSE1 protein level and the amount of collagen accumulation, representing fibrosis severity. Collectively, our findings highlight the GTSE1-ZEB1 axis as a novel driver of the pathological EMT characteristic during PF development and progression, supporting further investigation into GTSE1-targeting approaches for PF treatment.

4.
Mater Today Bio ; 28: 101254, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39328787

ABSTRACT

Guiding endogenous regeneration of bone defects using biomaterials and regenerative medicine is considered an optimal strategy. One of the effective therapeutic approaches involves using transgene-expressed stem cells to treat tissue destruction and replace damaged parts. Among the various gene editing techniques for cells, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) is considered as a promising method owing to the increasing therapeutic potential of cells by targeting specific sites. Herein, a vitamin D-incorporated poly(lactic-co-glycolic acid) (PLGA) scaffold with bone morphogenetic protein 2 (BMP2)/vascular endothelial growth factor (VEGF)-overexpressed tonsil-derived MSCs (ToMSCs) via CRISPR/Cas9 was introduced for bone tissue regeneration. The optimized seeding ratio of engineered ToMSCs on the scaffold demonstrated favorable immunomodulatory function, angiogenesis, and osteogenic activity in vitro. The multifunctional scaffold could potentially support stem cell in vivo and induce the transition from M1 to M2 macrophage with magnesium hydroxide and vitamin D. This study highlights the improved synergistic effect of a vitamin D-incorporated PLGA scaffold and a gene-edited ToMSCs for bone tissue engineering and regenerative medicine.

5.
Results Probl Cell Differ ; 73: 131-146, 2024.
Article in English | MEDLINE | ID: mdl-39242377

ABSTRACT

Trogocytosis, an active cellular process involving the transfer of plasma membrane and attached cytosol during cell-to-cell contact, has been observed prominently in CD4 T cells interacting with antigen-presenting cells carrying antigen-loaded major histocompatibility complex (MHC) class II molecules. Despite the inherent absence of MHC class II molecules in CD4 T cells, they actively acquire these molecules from encountered antigen-presenting cells, leading to the formation of antigen-loaded MHC class II molecules-dressed CD4 T cells. Subsequently, these dressed CD4 T cells engage in antigen presentation to other CD4 T cells, revealing a dynamic mechanism of immune communication. The transferred membrane proteins through trogocytosis retain their surface localization, thereby altering cellular functions. Concurrently, the donor cells experience a loss of membrane proteins, resulting in functional changes due to the altered membrane properties. This chapter provides a focused exploration into trogocytosis-mediated transfer of immune regulatory molecules and its consequential impact on diverse immune responses.


Subject(s)
Antigen-Presenting Cells , CD4-Positive T-Lymphocytes , Trogocytosis , Humans , Animals , Cell Communication , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Antigen-Presenting Cells/cytology , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism
6.
Biofactors ; 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39291722

ABSTRACT

Colorectal cancer (CRC) is the second most common cause of cancer-related death and represents a serious worldwide health problem. CRC metastasis decreases the survival rate of cancer patients, underscoring the need to identify novel anticancer agents and therapeutic targets. Here, we introduce Plectalibertellenone A (B) as a promising agent for the inhibition of CRC cell motility and glucose metabolism and explore its mechanism of action in CRC cells. Plectalibertellenone A suppressed TGF-ß gene expression and the activation of the TGF-ß/Smad signaling pathway, leading to reverse epithelial to mesenchymal transition (EMT) by modulating the expressions of EMT markers and transcriptional factors such as E-cadherin, N-cadherin, vimentin, Slug, Snail, Twist, and ZEB1/2. Furthermore, disruption of Wnt signaling inhibited CRC motility and glucose metabolism including glycolysis and oxidative phosphorylation, primarily affecting glycolytic enzymes, GLUT1, HK2, PKM2, LDHA, and HIF-1α under hypoxic condition. Therefore, Plectalibertellenone A is a potential drug candidate that can be developed into a promising anticancer treatment to prevent CRC metastasis and inhibit glucose metabolism.

7.
J Anim Sci Technol ; 66(3): 630-634, 2024 May.
Article in English | MEDLINE | ID: mdl-38975571

ABSTRACT

Latilactobacillus curvatus CACC879 originated from swine feces in Korea, and its probiotic properties have been analyzed. The complete genome of strain CACC879 contained one chromosome 1,398,247 bp in length and three circular plasmids, namely, pCACC879-1 (591,981 bp), pCACC879-2 (14,542 base pairs [bp]), and pCACC879-3 (45,393 bp). The complete genome encodes a total of 2,077 genes, including 25 rRNA genes and 90 tRNA genes. In addition, probiotic stability- genes acid/bile related to salts tolerance, the biosynthesis of cobalamin (vitamin B12), riboflavin (vitamin B2), and CRISPR/Cas9 were found in the whole genomes. Remarkably, L. curvatus CACC879 contained the antioxidant-related (peroxiredoxin) and bacteriocin-related genes (lysM and blpA). Overall, these results demonstrate that L. curvatus CACC879 is a functional probiotic candidate for animal industry applications.

8.
Bioact Mater ; 40: 345-365, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38978804

ABSTRACT

The musculoskeletal system, which is vital for movement, support, and protection, can be impaired by disorders such as osteoporosis, osteoarthritis, and muscular dystrophy. This review focuses on the advances in tissue engineering and regenerative medicine, specifically aimed at alleviating these disorders. It explores the roles of cell therapy, particularly Mesenchymal Stem Cells (MSCs) and Adipose-Derived Stem Cells (ADSCs), biomaterials, and biomolecules/external stimulations in fostering bone and muscle regeneration. The current research underscores the potential of MSCs and ADSCs despite the persistent challenges of cell scarcity, inconsistent outcomes, and safety concerns. Moreover, integrating exogenous materials such as scaffolds and external stimuli like electrical stimulation and growth factors shows promise in enhancing musculoskeletal regeneration. This review emphasizes the need for comprehensive studies and adopting innovative techniques together to refine and advance these multi-therapeutic strategies, ultimately benefiting patients with musculoskeletal disorders.

9.
BMC Med Inform Decis Mak ; 24(1): 191, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978027

ABSTRACT

BACKGROUND: Recent advances in Vision Transformer (ViT)-based deep learning have significantly improved the accuracy of lung disease prediction from chest X-ray images. However, limited research exists on comparing the effectiveness of different optimizers for lung disease prediction within ViT models. This study aims to systematically evaluate and compare the performance of various optimization methods for ViT-based models in predicting lung diseases from chest X-ray images. METHODS: This study utilized a chest X-ray image dataset comprising 19,003 images containing both normal cases and six lung diseases: COVID-19, Viral Pneumonia, Bacterial Pneumonia, Middle East Respiratory Syndrome (MERS), Severe Acute Respiratory Syndrome (SARS), and Tuberculosis. Each ViT model (ViT, FastViT, and CrossViT) was individually trained with each optimization method (Adam, AdamW, NAdam, RAdam, SGDW, and Momentum) to assess their performance in lung disease prediction. RESULTS: When tested with ViT on the dataset with balanced-sample sized classes, RAdam demonstrated superior accuracy compared to other optimizers, achieving 95.87%. In the dataset with imbalanced sample size, FastViT with NAdam achieved the best performance with an accuracy of 97.63%. CONCLUSIONS: We provide comprehensive optimization strategies for developing ViT-based model architectures, which can enhance the performance of these models for lung disease prediction from chest X-ray images.


Subject(s)
Deep Learning , Lung Diseases , Humans , Lung Diseases/diagnostic imaging , Radiography, Thoracic/methods , Radiography, Thoracic/standards , COVID-19/diagnostic imaging
10.
Nat Commun ; 15(1): 4963, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862535

ABSTRACT

Image-based lineage tracing enables tissue turnover kinetics and lineage potentials of different adult cell populations to be investigated. Previously, we reported a genetic mouse model system, Red2Onco, which ectopically expressed mutated oncogenes together with red fluorescent proteins (RFP). This system enabled the expansion kinetics and neighboring effects of oncogenic clones to be dissected. We now report Red2Flpe-SCON: a mosaic knockout system that uses multicolor reporters to label both mutant and wild-type cells. We develop the Red2Flpe mouse line for red clone-specific Flpe expression, as well as the FRT-based SCON (Short Conditional IntrON) method to facilitate tunable conditional mosaic knockouts in mice. We use the Red2Flpe-SCON method to study Sox2 mutant clonal analysis in the esophageal epithelium of adult mice which reveal that the stem cell gene, Sox2, is less essential for adult stem cell maintenance itself, but rather for stem cell proliferation and differentiation.


Subject(s)
Luminescent Proteins , Mice, Knockout , Red Fluorescent Protein , SOXB1 Transcription Factors , Animals , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Mice , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mosaicism , Cell Differentiation , Cell Proliferation/genetics , Esophagus/metabolism , Esophagus/pathology , Cell Lineage/genetics , Introns/genetics , Female , Male
11.
Int J Stem Cells ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38698632

ABSTRACT

The elucidation of the pathophysiology underlying various diseases necessitates the development of research platforms that faithfully mimic in vivo conditions. Traditional model systems such as two-dimensional cell cultures and animal models have proven inadequate in capturing the complexities of human disease modeling. However, recent strides in organoid culture systems have opened up new avenues for comprehending gastric stem cell homeostasis and associated diseases, notably gastric cancer. Given the significance of gastric cancer, a thorough understanding of its pathophysiology and molecular underpinnings is imperative. To this end, the utilization of patient-derived organoid libraries emerges as a remarkable platform, as it faithfully mirrors patient-specific characteristics, including mutation profiles and drug sensitivities. Furthermore, genetic manipulation of gastric organoids facilitates the exploration of molecular mechanisms underlying gastric cancer development. This review provides a comprehensive overview of recent advancements in various adult stem cell-derived gastric organoid models and their diverse applications.

12.
J Cell Biol ; 223(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38767572

ABSTRACT

Proteasome activity is crucial for cellular integrity, but how tissues adjust proteasome content in response to catabolic stimuli is uncertain. Here, we demonstrate that transcriptional coordination by multiple transcription factors is required to increase proteasome content and activate proteolysis in catabolic states. Using denervated mouse muscle as a model system for accelerated proteolysis in vivo, we reveal that a two-phase transcriptional program activates genes encoding proteasome subunits and assembly chaperones to boost an increase in proteasome content. Initially, gene induction is necessary to maintain basal proteasome levels, and in a more delayed phase (7-10 days after denervation), it stimulates proteasome assembly to meet cellular demand for excessive proteolysis. Intriguingly, the transcription factors PAX4 and α-PALNRF-1 control the expression of proteasome among other genes in a combinatorial manner, driving cellular adaptation to muscle denervation. Consequently, PAX4 and α-PALNRF-1 represent new therapeutic targets to inhibit proteolysis in catabolic diseases (e.g., type-2 diabetes, cancer).


Subject(s)
Nuclear Respiratory Factor 1 , Paired Box Transcription Factors , Proteasome Endopeptidase Complex , Proteolysis , Animals , Male , Mice , Gene Expression Regulation , Muscle, Skeletal/metabolism , Paired Box Transcription Factors/metabolism , Paired Box Transcription Factors/genetics , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/genetics , Mice, Inbred ICR , Nuclear Respiratory Factor 1/genetics , Nuclear Respiratory Factor 1/metabolism
13.
JACS Au ; 4(4): 1521-1537, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38665668

ABSTRACT

The anticancer therapeutic effects of usnic acid (UA), a lichen secondary metabolite, have been demonstrated in vitro and in vivo. However, the mechanism underlying the anticancer effect of UA remains to be clarified. In this study, the target protein of UA was identified using a UA-linker-Affi-Gel molecule, which showed that UA binds to the 14-3-3 protein. UA binds to 14-3-3, causing the degradation of proteasomal and autophagosomal proteins. The interaction of UA with 14-3-3 isoforms modulated cell invasion, cell cycle progression, aerobic glycolysis, mitochondrial biogenesis, and the Akt/mTOR, JNK, STAT3, NF-κB, and AP-1 signaling pathways in colorectal cancer. A peptide inhibitor of 14-3-3 blocked or regressed the activity of UA and inhibited its effects. The results suggest that UA binds to 14-3-3 isoforms and suppresses cancer progression by affecting 14-3-3 targets and phosphorylated proteins.

14.
bioRxiv ; 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-38659853

ABSTRACT

Metastasis is the leading cause of cancer-related mortality. Paneth cells provide stem cell niche factors in homeostatic conditions, but the underlying mechanisms of cancer stem cell niche development are unclear. Here we report that Dickkopf-2 (DKK2) is essential for the generation of cancer cells with Paneth cell properties during colon cancer metastasis. Splenic injection of Dkk2 -knockout (KO) cancer organoids into C57BL/6 mice resulted in a significant reduction of liver metastases. Transcriptome analysis showed reduction of Paneth cell markers such as lysozymes in KO organoids. Single cell RNA sequencing analyses of murine metastasized colon cancer cells and patient samples identified the presence of lysozyme positive cells with Paneth cell properties including enhanced glycolysis. Further analyses of transcriptome and chromatin accessibility suggested Hepatocyte nuclear factor 4-alpha (HNF4A) as a downstream target of DKK2. Chromatin immunoprecipitation followed by sequencing analysis revealed that HNF4A binds to the promoter region of Sox9 , a well-known transcription factor for Paneth cell differentiation. In the liver metastatic foci, DKK2 knockout rescued HNF4A protein levels followed by reduction of lysozyme positive cancer cells. Taken together, DKK2-mediated reduction of HNF4A protein promotes the generation of lysozyme positive cancer cells with Paneth cell properties in the metastasized colon cancers.

15.
Sci Data ; 11(1): 342, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580686

ABSTRACT

Silybum marianum (L.) Gaertn., commonly known as milk thistle, is a medicinal plant belonging to the Asteraceae family. This plant has been recognized for its medicinal properties for over 2,000 years. However, the genome of this plant remains largely undiscovered, having no reference genome at a chromosomal level. Here, we assembled the chromosome-level genome of S. marianum, allowing for the annotation of 53,552 genes and the identification of transposable elements comprising 58% of the genome. The genome assembly from this study showed 99.1% completeness as determined by BUSCO assessment, while the previous assembly (ASM154182v1) showed 36.7%. Functional annotation of the predicted genes showed 50,329 genes (94% of total genes) with known protein functions in public databases. Comparative genome analysis among Asteraceae plants revealed a striking conservation of collinearity between S. marianum and C. cardunculus. The genomic information generated from this study will be a valuable resource for milk thistle breeding and for use by the larger research community.


Subject(s)
Genome, Plant , Silybum marianum , Plant Breeding , Plants, Medicinal/genetics , Silybum marianum/genetics , Chromosomes, Plant
16.
Psychiatry Investig ; 21(3): 284-293, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38569586

ABSTRACT

OBJECTIVE: The impact of the government-initiated senior employment program (GSEP) on geriatric depressive symptoms is underexplored. Unearthing this connection could facilitate the planning of future senior employment programs and geriatric depression interventions. In the present study, we aimed to elucidate the possible association between geriatric depressive symptoms and GSEP in older adults. METHODS: This study employed data from 9,287 participants aged 65 or older, obtained from the 2020 Living Profiles of Older People Survey. We measured depressive symptoms using the Korean version of the 15-item Geriatric Depression Scale. The principal exposure of interest was employment status and GSEP involvement. Data analysis involved multiple linear regression. RESULTS: Employment, independent of income level, showed association with decreased depressive symptoms compared to unemployment (p<0.001). After adjustments for confounding variables, participation in GSEP jobs showed more significant reduction in depressive symptoms than non-GSEP jobs (ß=-0.968, 95% confidence interval [CI]=-1.197 to -0.739, p<0.001 for GSEP jobs, ß=-0.541, 95% CI=-0.681 to -0.401, p<0.001 for non-GSEP jobs). Notably, the lower income tertile in GSEP jobs showed a substantial reduction in depressive symptoms compared to all income tertiles in non-GSEP jobs. CONCLUSION: The lower-income GSEP group experienced lower depressive symptoms and life dissatisfaction compared to non-GSEP groups regardless of income. These findings may provide essential insights for the implementation of government policies and community-based interventions.

17.
PLoS One ; 19(3): e0299792, 2024.
Article in English | MEDLINE | ID: mdl-38536854

ABSTRACT

Two probiotic candidates, Lactobacillus reuteri C1 (C1) and Lactobacillus acidophilus C5 (C5), which were previously isolated from canines, were evaluated in the present study. L. reuteri and L. acidophilus have anti-oxidant, anti-inflammatory, immune-enhancing, and anti-cancer properties and exhibit various probiotic effects in humans and animals. The strains C1 and C5 demonstrated good tolerance to acid and bile salt exposure, exhibited effective adhesion to HT-29 cell monolayer, and displayed sensitivity to antibiotics, thus affirming their probiotic characteristics. Moreover, C1 and C5 exhibited the ability to downregulate the expression of inducible NO synthase (iNOS), an immunomodulatory factor, leading to a reduction in NO production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. These strains also demonstrated potent anti-inflammatory effects in LPS-stimulated RAW 264.7 cells, achieved through the augmentation of anti-inflammatory cytokine IL-10 expression and the inhibition of pro-inflammatory cytokine IL-1ß expression. These anti-inflammatory effects of C1 and C5 were closely associated with the mitogen-activated protein kinase (MAPK) signaling pathway. The results of the present study suggest that the C1 and C5 probiotic candidates attenuate LPS-induced inflammation via the MAPK signaling pathway and the strains can be used as probiotics considering their anti-inflammatory potential.


Subject(s)
Limosilactobacillus reuteri , Probiotics , Humans , Animals , Dogs , Lactobacillus , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Anti-Inflammatory Agents/pharmacology , MAP Kinase Signaling System , Cytokines/metabolism , Feces , Lactobacillus acidophilus/physiology , Probiotics/pharmacology , NF-kappa B/metabolism
18.
Nanomaterials (Basel) ; 14(6)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38535650

ABSTRACT

The bulk-heterojunction (BHJ) system that uses a π-conjugated polymer as an electron donor, and a fullerene derivative as an electron acceptor, is widely used in organic solar cells (OSCs) to facilitate efficient charge separation and extraction. However, the conventional BHJ system still suffers from unwanted phase segregation caused by the existence of significant differences in surface energy between the two BHJ components and the charge extraction layer during film formation. In the present work, we demonstrate a sophisticated control of fast film-growth kinetics that can be used to achieve a uniform distribution of donor and acceptor materials in the BHJ layer of OSCs without undesirable phase separation. Our approach involves depositing the BHJ solution onto a spinning substrate, thus inducing rapid evaporation of the solvent during BHJ film formation. The fast-growth process prevents the fullerene derivative from migrating toward the charge extraction layer, thereby enabling a homogeneous distribution of the fullerene derivative within the BHJ film. The OSCs based on the fast-growth BHJ thin film are found to exhibit substantial increases in JSC, fill factor, and a PCE up to 11.27 mA/cm2, 66%, and 4.68%, respectively; this last value represents a remarkable 17% increase in PCE compared to that of conventional OSCs.

19.
Nanoscale ; 16(14): 7110-7122, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38501279

ABSTRACT

This study was initiated due to the physically unexplainable tumor controls resulting from metal nanoparticle (MNP) experiments even under MV X-ray irradiation. A more accurate explanation of the mechanism of radiosensitization induced by MNP is warranted, considering both its physical dose enhancement and biological sensitization, as related research is lacking. Thus, we aimed to examine the intricate dynamics involved in MNP-induced radiosensitization. We conducted specifically designed clonogenic assays for the A549 lung cancer cell line with MNP irradiated by 6 MV and 300 kVp X-rays. Two types of MNP were employed: one based on iron oxide, promoting ferroptosis, and the other on gold nanoparticles known for inducing a significant dose enhancement, particularly at low-energy X-rays. We introduced the lethality enhancement factor (LEF) as the fraction in the cell killing attributed to biological sensitization. Subsequently, Monte Carlo simulations were conducted to evaluate the radial dose profiles for each MNP, corresponding to the physical enhancement. Finally, the local effect model was applied to the clonogenic assay results on real cell images. The LEF and the dose enhancement in the cytoplasm were incorporated to increase the accuracy in the average lethal events and, consequently, in the survival fraction. The results reveal an increased cell killing for both of the MNP under MV and kV X-ray irradiation. In both types of MNP, the LEF reveals a biological sensitization evident. The sensitizer enhancement ratio, derived from the calculations, exhibited only 3% and 1% relative differences compared to the conventional linear-quadratic model for gold and ferroptosis inducer nanoparticles, respectively. These findings indicate that MNPs sensitize cells via radiation through mechanisms akin to ferroptosis inducers, not exclusively relying on a physical dose enhancement. Their own contributions to survival fractions were successfully integrated into computational modeling.


Subject(s)
Lung Neoplasms , Metal Nanoparticles , Humans , X-Rays , Gold/pharmacology , Computer Simulation , Monte Carlo Method
20.
Anal Chim Acta ; 1301: 342465, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38553123

ABSTRACT

BACKGROUND: Most biological molecular complexes consist of multiple functional domains, yet rationally constructing such multifunctional complexes is challenging. Aptamers, the nucleic acid-based functional molecules, can perform multiple tasks including target recognition, conformational changes, and enzymatic activities, while being chemically synthesizable and tunable, and thus provide a basis for engineering enhanced functionalities through combination of multiple units. However, the conventional approach of simply combining aptamer units in a serial manner is susceptible to undesired crosstalk or interference between the aptamer units and to false interactions with non-target molecules; besides, the approach would require additional mechanisms to separate the units if they are desired to function independently. It is clearly a challenge to develop multi-aptamer complexes that preserve independent functions of each unit while avoiding undesired interference and non-specific interactions. RESULTS: By directly in vitro selecting a 'trans' aptamer complex, we demonstrate that one aptamer unit ('utility module') can remain hidden or 'inactive' until a target analyte triggers the other unit ('sensing module') and separates the two aptamers. Since the operation of the utility module occurs free from the sensing module, unnecessary crosstalk between the two units can be avoided. Because the utility module is kept inactive until separated from the complex, non-specific interactions of the hidden module with noncognate targets can be naturally prevented. In our demonstration, the sensing module was selected to detect serotonin, a clinically important neurotransmitter, and the target-binding-induced structure-switching of the sensing module reveals and activates the utility module that turns on a fluorescence signal. The aptamer complex exhibited a moderately high affinity and an excellent specificity for serotonin with ∼16-fold discrimination against common neurotransmitter molecules, and displayed strong robustness to perturbations in the design, disallowing nonspecific reactions against various challenges. SIGNIFICANCE: This work represents the first example of a trans aptamer complex that was in vitro selected de novo. The trans aptamer complex selected by our strategy does not require chemical modifications or immediate optimization processes to function, because the complex is directly selected to perform desired functions. This strategy should be applicable to a wide range of functional nucleic acid moieties, which will open up diverse applications in biosensing and molecular therapeutics.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Nucleic Acids , Aptamers, Nucleotide/chemistry , Serotonin , Neurotransmitter Agents , SELEX Aptamer Technique
SELECTION OF CITATIONS
SEARCH DETAIL