Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 12(5): e0177056, 2017.
Article in English | MEDLINE | ID: mdl-28562673

ABSTRACT

Bacterial centromeres-also called parS, are cis-acting DNA sequences which, together with the proteins ParA and ParB, are involved in the segregation of chromosomes and plasmids. The specific binding of ParB to parS nucleates the assembly of a large ParB/DNA complex from which ParA-the motor protein, segregates the sister replicons. Closely related families of partition systems, called Bsr, were identified on the chromosomes and large plasmids of the multi-chromosomal bacterium Burkholderia cenocepacia and other species from the order Burkholeriales. The centromeres of the Bsr partition families are 16 bp palindromes, displaying similar base compositions, notably a central CG dinucleotide. Despite centromeres bind the cognate ParB with a narrow specificity, weak ParB-parS non cognate interactions were nevertheless detected between few Bsr partition systems of replicons not belonging to the same genome. These observations suggested that Bsr partition systems could have a common ancestry but that evolution mostly erased the possibilities of cross-reactions between them, in particular to prevent replicon incompatibility. To detect novel similarities between Bsr partition systems, we have analyzed the binding of six Bsr parS sequences and a wide collection of modified derivatives, to their cognate ParB. The study was carried out by Surface Plasmon Resonance imaging (SPRi) mulitplex analysis enabling a systematic survey of each nucleotide position within the centromere. We found that in each parS some positions could be changed while maintaining binding to ParB. Each centromere displays its own pattern of changes, but some positions are shared more or less widely. In addition from these changes we could speculate evolutionary links between these centromeres.


Subject(s)
Bacterial Proteins/genetics , Burkholderia cepacia/genetics , Centromere , Chromosomes, Bacterial , Plasmids , Surface Plasmon Resonance/methods
2.
Mol Microbiol ; 97(4): 759-74, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25988355

ABSTRACT

Processes favoring the exceptional resistance to genotoxic stress of Deinococcus radiodurans are not yet completely characterized. It was postulated that its nucleoid and chromosome(s) organization could participate in the DNA double strand break repair process. Here, we investigated the organization of chromosome 1 by localization of three chromosomal loci including oriC, Ter and a locus located in its left arm. For this purpose, we used a ParB-parS system to visualize the position of the loci before and after exposure to γ-rays. By comparing the number of fluorescent foci with the number of copies of the studied loci present in the cells measured by quantitative polymerase chain reaction (qPCR), we demonstrated that the 4-10 copies of chromosome 1 per cell are dispersed within the nucleoid before irradiation, indicating that the chromosome copies are not prealigned. Chromosome segregation is progressive but not co-ordinated, allowing each locus to be paired with its sister during part of the cell cycle. After irradiation, the nucleoid organization is modified, involving a transient alignment of the loci in the late stage of DNA repair and a delay of segregation of the Ter locus. We discuss how these events can influence DNA double strand break repair.


Subject(s)
Deinococcus/genetics , Deinococcus/radiation effects , Bacterial Proteins/genetics , Chromatin Assembly and Disassembly , Chromosome Mapping , Chromosomes, Bacterial , DNA Breaks, Double-Stranded , DNA Damage/radiation effects , DNA Repair , DNA, Bacterial/genetics , DNA-Binding Proteins/genetics , Deinococcus/cytology , Deinococcus/metabolism , Radiation Tolerance/physiology
3.
Proteomics ; 13(23-24): 3457-69, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24307635

ABSTRACT

The nucleoids of radiation-resistant Deinococcus species show a high degree of compaction maintained after ionizing irradiation. We identified proteins recruited after irradiation in nucleoids of Deinococcus radiodurans and Deinococcus deserti by means of comparative proteomics. Proteins in nucleoid-enriched fractions from unirradiated and irradiated Deinococcus were identified and semiquantified by shotgun proteomics. The ssDNA-binding protein SSB, DNA gyrase subunits GyrA and GyrB, DNA topoisomerase I, RecA recombinase, UvrA excinuclease, RecQ helicase, DdrA, DdrB, and DdrD proteins were found in significantly higher amounts in irradiated nucleoids of both Deinococcus species. We observed, by immunofluorescence microscopy, the subcellular localization of these proteins in D. radiodurans, showing for the first time the recruitment of the DdrD protein into the D. radiodurans nucleoid. We specifically followed the kinetics of recruitment of RecA, DdrA, and DdrD to the nucleoid after irradiation. Remarkably, RecA proteins formed irregular filament-like structures 1 h after irradiation, before being redistributed throughout the cells by 3 h post-irradiation. Comparable dynamics of DdrD localization were observed, suggesting a possible functional interaction between RecA and DdrD. Several proteins involved in nucleotide synthesis were also seen in higher quantities in the nucleoids of irradiated cells, indicative of the existence of a mechanism for orchestrating the presence of proteins involved in DNA metabolism in nucleoids in response to massive DNA damage. All MS data have been deposited in the ProteomeXchange with identifier PXD00196 (http://proteomecentral.proteomexchange.org/dataset/PXD000196).


Subject(s)
Bacterial Proteins/metabolism , DNA Damage , Deinococcus/genetics , Proteome/metabolism , DNA Repair , DNA, Bacterial/genetics , Deinococcus/metabolism , Deinococcus/radiation effects , Kinetics , Protein Transport , Proteomics , Radiation Tolerance , Rec A Recombinases/metabolism , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL