Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Methods Enzymol ; 659: 145-170, 2021.
Article En | MEDLINE | ID: mdl-34752283

Expression of heterologous genes in Escherichia coli is a routine technology for recombinant protein production, but the predictable recovery of properly folded and uniformly bioactive material remains a challenge. Misfolded proteins typically accumulate as insoluble inclusion bodies, and a variety of strategies have been employed in efforts to increase the yield of soluble product. One technique is the overexpression of E. coli protein chaperones during recombinant protein induction, in an effort to increase the folding capacity of the bacterial host. We have developed an alternative approach, by supplementing the host protein folding machinery with chaperones from other species. Extremophiles have evolved under conditions (extremes of temperature, salinity, pressure, and/or pH) that make them attractive candidates for possessing chaperones with novel folding activities. The green fluorescent protein (GFP) of Aequorea victoria, which is predominantly insoluble under typical recombinant expression culture conditions, was employed as an in vivo indicator of protein folding activity for chaperone homologs from a variety of extremophiles. For a subset of the chaperones tested, co-expression with GFP promoted an increase in both fluorescence signal intensity as well as the amount of GFP recovered in the soluble protein fraction. Several archaeal chaperones were also found to be able to refold soluble Lyt_Orn C40 peptidase from inclusion bodies in vitro. In particular, Pf Cpn(MA), a mutant chaperonin which exhibited significant refolding activity, is also shown to deconstruct the morphology and structure of inclusion bodies (Kurouski et al., 2012). Hence, the simple and rapid GFP assay provides a tool to screen for extremophilic chaperones that exhibit folding activity under E. coli growth conditions, and suggests that increasing the repertoire of heterologous chaperones might provide a partial but general solution to the problem of recombinant protein insolubility.


Escherichia coli Proteins , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Protein Folding , Recombinant Proteins/metabolism
2.
Glycoconj J ; 35(1): 77-86, 2018 02.
Article En | MEDLINE | ID: mdl-29039121

The hepatopancreas of oyster, Crassostrea virginica, was found to contain two unique glycosphingolipid (GSL) cleaving enzymes, ceramide glycanase (CGase) and ceramidase. These two enzymes were found to be tightly associated together through the consecutive purification steps including gel filtration, hydrophobic interaction and cation-exchange chromatographies. They were separated only by preparatory SDS-PAGE. The purified CGase was found to have a molecular mass of 52 kDa and pH optimum of 3.2-3.3. This enzyme prefers to hydrolyze the acidic GSLs, II3SO3LacCer and gangliosides over the neutral GSLs. Oyster ceramidase was found to have a molecular mass of 88 kDa and pH optimum of 4-4.5. Since oyster ceramidase greatly prefers ceramides with C6 to C8 fatty acids, C6-ceramide (N-hexanoyl-D-sphingosine) was used as the substrate for its purification and characterization. The oyster acid ceramidase also catalyzed the synthesis of ceramide from a sphingosine and a fatty acid. For the synthesis, C16 and C18 fatty acids were the best precursors. The amino acid sequences of the two cyanogenbromide peptides derived from the purified ceramidase were found to have similarities to those of several neutral and alkaline ceramidases reported. The tight association of CGase and ceramidase may indicate that CGase in oyster hepatopancreas acts as a vehicle to release ceramide from GSLs for subsequent generation of sphingosines and fatty acids by ceramidase to serve as signaling factors and energy source.


Ceramidases/metabolism , Crassostrea/enzymology , Glycoside Hydrolases/metabolism , Glycosphingolipids/metabolism , Hepatopancreas/enzymology , Animals , Ceramides/metabolism , Crassostrea/metabolism , Fatty Acids/metabolism , Hepatopancreas/metabolism
3.
Glycobiology ; 25(12): 1431-40, 2015 Dec.
Article En | MEDLINE | ID: mdl-26362869

We have previously reported that oyster hepatopancreas contained three unusual α-ketoside hydrolases: (i) a 3-deoxy-d-manno-oct-2-ulosonic acid α-ketoside hydrolase (α-Kdo-ase), (ii) a 3-deoxy-D-glycero-D-galacto-non-2-ulosonic acid α-ketoside hydrolase and (iii) a bifunctional ketoside hydrolase capable of cleaving both the α-ketosides of Kdn and Neu5Ac (Kdn-sialidase). After completing the purification of Kdn-sialidase, we proceeded to clone the gene encoding this enzyme. Unexpectedly, we found that instead of expressing Kdn-sialidase, our cloned gene expressed α-Kdo-ase activity. The full-length gene, consisting of 1176-bp (392 amino acids, Mr 44,604), expressed an active recombinant α-Kdo-ase (R-α-Kdo-ase) in yeast and CHO-S cells, but not in various Escherichia coli strains. The deduced amino acid sequence contains two Asp boxes (S(277)PDDGKTW and S(328)TDQGKTW) commonly found in sialidases, but is devoid of the signature FRIP-motif of sialidase. The R-α-Kdo-ase effectively hydrolyzed the Kdo in the core-oligosaccharide of the structurally defined lipopolysaccharide (LPS), Re-LPS (Kdo(2)-Lipid A) from Salmonella minnesota R595 and E. coli D31m4. However, Rd-LPS from S. minnesota R7 that contained an extra outer core phosphorylated heptose was only slowly hydrolyzed. The complex type LPS from Neisseria meningitides A1 and M992 that contained extra 5-6 sugar units at the outer core were refractory to R-α-Kdo-ase. This R-α-Kdo-ase should become useful for studying the structure and function of Kdo-containing glycans.


Glycoside Hydrolases/metabolism , Ostreidae/enzymology , Sugar Acids/metabolism , Amino Acid Motifs , Amino Acid Sequence , Animals , Base Sequence , CHO Cells , Cricetinae , Cricetulus , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/genetics , Liver/metabolism , Molecular Sequence Data , Ostreidae/genetics , Pancreas/metabolism , Saccharomyces cerevisiae/metabolism
4.
Biochemistry ; 51(10): 2032-43, 2012 Mar 13.
Article En | MEDLINE | ID: mdl-22320201

We have previously introduced a general kinetic approach for comparative study of processivity, thermostability, and resistance to inhibitors of DNA polymerases [Pavlov, A. R., et al. (2002) Proc. Natl. Acad. Sci. U.S.A.99, 13510-13515]. The proposed method was successfully applied to characterize hybrid DNA polymerases created by fusing catalytic DNA polymerase domains with various sequence-nonspecific DNA binding domains. Here we use the developed kinetic analysis to assess basic parameters of DNA elongation by DNA polymerases and to further study the interdomain interactions in both previously constructed and new chimeric DNA polymerases. We show that connecting helix-hairpin-helix (HhH) domains to catalytic polymerase domains can increase thermostability, not only of DNA polymerases from extremely thermophilic species but also of the enzyme from a faculatative thermophilic bacterium Bacillus stearothermophilus. We also demonstrate that addition of Topo V HhH domains extends efficient DNA synthesis by chimerical polymerases up to 105 °C by maintaining processivity of DNA synthesis at high temperatures. We found that reversible high-temperature structural transitions in DNA polymerases decrease the rates of binding of these enzymes to the templates. Furthermore, activation energies and pre-exponential factors of the Arrhenius equation suggest that the mechanism of electrostatic enhancement of diffusion-controlled association plays a minor role in binding of templates to DNA polymerases.


DNA-Directed DNA Polymerase/chemistry , DNA-Directed DNA Polymerase/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Base Sequence , Binding Sites , Catalytic Domain , DNA/biosynthesis , DNA/metabolism , DNA, Bacterial/biosynthesis , DNA, Bacterial/genetics , Enzyme Stability , Geobacillus stearothermophilus/enzymology , Geobacillus stearothermophilus/genetics , Kinetics , Protein Interaction Domains and Motifs , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Substrate Specificity , Taq Polymerase/chemistry , Taq Polymerase/metabolism , Temperature , Thermodynamics
5.
J Mol Biol ; 364(4): 667-77, 2006 Dec 08.
Article En | MEDLINE | ID: mdl-17027029

We determined the sequence of the 152,372 bp genome of phiYS40, a lytic tailed bacteriophage of Thermus thermophilus. The genome contains 170 putative open reading frames and three tRNA genes. Functions for 25% of phiYS40 gene products were predicted on the basis of similarity to proteins of known function from diverse phages and bacteria. phiYS40 encodes a cluster of proteins involved in nucleotide salvage, such as flavin-dependent thymidylate synthase, thymidylate kinase, ribonucleotide reductase, and deoxycytidylate deaminase, and in DNA replication, such as DNA primase, helicase, type A DNA polymerase, and predicted terminal protein involved in initiation of DNA synthesis. The structural genes of phiYS40, most of which have no similarity to sequences in public databases, were identified by mass spectrometric analysis of purified virions. Various phiYS40 proteins have different phylogenetic neighbors, including myovirus, podovirus, and siphovirus gene products, bacterial genes and, in one case, a dUTPase from a eukaryotic virus. phiYS40 has apparently arisen through multiple acts of recombination between different phage genomes as well as through acquisition of bacterial genes.


Bacteriophages/genetics , Genome, Viral , Proteomics , Thermus thermophilus/virology , Virion/chemistry , Amino Acid Sequence , DNA Replication , Molecular Sequence Data , Open Reading Frames , Phylogeny , RNA, Transfer/genetics , Recombination, Genetic , Sequence Analysis, DNA , Viral Proteins
...