Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Article En | MEDLINE | ID: mdl-38684174

OBJECTIVES: Postoperative organ dysfunction is common after cardiac surgery, particularly when cardiopulmonary bypass (CPB) is used. The Sequential Organ Failure Assessment (SOFA) score is validated to predict morbidity and mortality in cardiac surgery. However, the impact of CPB duration on postoperative SOFA remains unclear. METHODS: This is a retrospective study. Categorical values are presented as percentages. The comparison of SOFA groups utilized the Kruskal-Wallis chi-squared test, complemented by ad hoc Dunn's test with Bonferroni correction. Multinomial logistics regressions were employed to evaluate the relationship between CPB time and SOFA. RESULTS: A total of 1032 patients were included. CPB time was independently associated with higher postoperative SOFA scores at 24 h. CPB time was significantly higher in patients with SOFA 4-5 (**P = 0.0022) or higher (***P < 0.001) when compared to SOFA 0-1. The percentage of patients with no/mild dysfunction decreased with longer periods of CPB, down to 0% for CPB time >180min (50% of the patients with >180m in of CPB presented SOFA ≥ 10). The same trend is observed for each of the SOFA variables, with higher impact in the cardiovascular and renal systems. Severe dysfunction occurs especially >200 min of CPB (cardiovascular system >100 min; other systems mainly >200 min). CONCLUSIONS: CPB time may predict the probability of postoperative SOFA categories. Patients with extended CPB durations exhibited higher SOFA scores (overall and for each variable) at 24 h, with higher proportion of moderate and severe dysfunction with increasing times of CPB.

2.
Cephalalgia ; 44(4): 3331024241247845, 2024 Apr.
Article En | MEDLINE | ID: mdl-38676534

BACKGROUND: Cluster headache is a primary headache disorder characterized by bouts with circadian and circannual patterns. The CLOCK gene has a central role in regulating circadian rhythms. Here, we investigate the circannual CLOCK expression in a population of cluster headache patients in comparison to matched controls. METHODS: Patients with cluster headache were sampled two to four times over at least one year, both in or outside bouts, one week after each solstice and equinox. The expression of CLOCK was measured by quantitative real-time polymerase chain reaction (RT-PCR) in the peripheral blood. RESULTS: This study included 50 patients and 58 matched controls. Among the patient population, composed of 42/50 males (84%) with an average age of 44.6 years, 45/50 (90%) suffered from episodic cluster headache. Two to four samples were collected from each patient adding up to 161 samples, 36 (22.3%) of which were collected within a bout. CLOCK expression for cluster headache patients was considerably different from that of the control population in winter (p-value mean = 0.006283), spring (p-value mean = 0.000006) and summer (p-value mean = 0.000064), but not in autumn (p-value mean = 0.262272). For each season transition, the variations in CLOCK expression were more pronounced in the control group than in the cluster headache population. No statistically significant differences were found between bout and non-bout samples. No individual factors (age, sex, circadian chronotype, smoking and coffee habits or history of migraine) were related to CLOCK expression. CONCLUSIONS: We observed that CLOCK expression in cluster headache patients fluctuates less throughout the year than in the control population. Bout activity and lifestyle factors do not seem to influence CLOCK expression.


CLOCK Proteins , Cluster Headache , Humans , Cluster Headache/genetics , Male , Female , Adult , CLOCK Proteins/genetics , CLOCK Proteins/biosynthesis , Middle Aged , Circadian Rhythm , Seasons
3.
Elife ; 112022 12 07.
Article En | MEDLINE | ID: mdl-36476511

Anthracyclines are among the most used and effective anticancer drugs. Their activity has been attributed to DNA double-strand breaks resulting from topoisomerase II poisoning and to eviction of histones from select sites in the genome. Here, we show that the extensively used anthracyclines Doxorubicin, Daunorubicin, and Epirubicin decrease the transcription of nuclear factor kappa B (NF-κB)-dependent gene targets, but not interferon-responsive genes in primary mouse (Mus musculus) macrophages. Using an NMR-based structural approach, we demonstrate that anthracyclines disturb the complexes formed between the NF-κB subunit RelA and its DNA-binding sites. The anthracycline variants Aclarubicin, Doxorubicinone, and the newly developed Dimethyl-doxorubicin, which share anticancer properties with the other anthracyclines but do not induce DNA damage, also suppressed inflammation, thus uncoupling DNA damage from the effects on inflammation. These findings have implications for anticancer therapy and for the development of novel anti-inflammatory drugs with limited side effects for life-threatening conditions such as sepsis.


Anthracyclines , NF-kappa B , Animals , Mice , Anthracyclines/pharmacology , Antibiotics, Antineoplastic/pharmacology , Doxorubicin/pharmacology , DNA Damage , DNA
4.
Crit Care Explor ; 4(10): e0763, 2022 Oct.
Article En | MEDLINE | ID: mdl-36248314

Cardiac surgery is frequently associated with significant postoperative bleeding. Platelet-dysfunction is the main cardiopulmonary bypass (CPB)-induced hemostatic defect. Not only the number of platelets decreases, but also the remaining are functionally impaired. Although lipid metabolism is crucial for platelet function, little is known regarding platelet metabolic changes associated with CPB-dysfunction. Our aim is to explore possible contribution of metabolic perturbations for platelet dysfunction after cardiac surgery. DESIGN: Prospective cohort study. SETTING: Tertiary academic cardiothoracic-surgery ICU. PATIENTS: Thirty-three patients submitted to elective surgical aortic valve replacement. INTERVENTIONS: Samples from patients were collected at three time points (preoperative, 6- and 24-hr postoperative). Untargeted metabolic analysis using high-performance liquid chromatography-tandem mass spectrometry was performed to compare patients with significant postoperative bleeding with patients without hemorrhage. Principal component analyses, Wilcoxon matched-pairs signed-rank tests, adjusted to FDR, and pairwise comparison were used to identify pathways of interest. Enrichment and pathway metabolomic complemented the analyses. MEASUREMENTS AND MAIN RESULTS: We identified a platelet-related signature based on an overrepresentation of changes in known fatty acid metabolism pathways involved in platelet function. We observed that arachidonic acid (AA) levels and other metabolites from the pathway were reduced at 6 and 24 hours, independently from antiagreggation therapy and platelet count. Concentrations of preoperative AA were inversely correlated with postoperative chest tube blood loss but were not correlated with platelet count in the preoperative, at 6 or at 24 hours. Patients with significant postoperative blood-loss had considerably lower values of AA and higher transfusion rates. Values of postoperative interleukin-6 were strongly correlated with AA variability. CONCLUSIONS AND RELEVANCE: Our observations suggest that an inflammatory-related perturbation of AA metabolism is a signature of cardiac surgery with CPB and that preoperative levels of AA may be more relevant than platelet count to anticipate and prevent postoperative blood loss in patients submitted to cardiac surgery with CPB.

5.
Immunity ; 54(1): 53-67.e7, 2021 01 12.
Article En | MEDLINE | ID: mdl-33058782

Several classes of antibiotics have long been known to have beneficial effects that cannot be explained strictly on the basis of their capacity to control the infectious agent. Here, we report that tetracycline antibiotics, which target the mitoribosome, protected against sepsis without affecting the pathogen load. Mechanistically, we found that mitochondrial inhibition of protein synthesis perturbed the electron transport chain (ETC) decreasing tissue damage in the lung and increasing fatty acid oxidation and glucocorticoid sensitivity in the liver. Using a liver-specific partial and acute deletion of Crif1, a critical mitoribosomal component for protein synthesis, we found that mice were protected against sepsis, an observation that was phenocopied by the transient inhibition of complex I of the ETC by phenformin. Together, we demonstrate that mitoribosome-targeting antibiotics are beneficial beyond their antibacterial activity and that mitochondrial protein synthesis inhibition leading to ETC perturbation is a mechanism for the induction of disease tolerance.


Anti-Bacterial Agents/therapeutic use , Doxycycline/therapeutic use , Liver/immunology , Lung/immunology , Mitochondria/metabolism , Sepsis/drug therapy , Tetracycline/therapeutic use , Animals , Cell Cycle Proteins/genetics , Disease Models, Animal , Electron Transport , Hep G2 Cells , Humans , Lipid Metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
6.
FEBS J ; 287(21): 4602-4606, 2020 11.
Article En | MEDLINE | ID: mdl-32500671

The 'Crosstalks of immunity and metabolism' Symposium was focused on how the intercommunication between different organs and the immune system affects organismal health. At this meeting, experts in immunology and metabolic research provided novel insights into the growing field of immunometabolism. This report attempts to review and integrate views, ideas, propositions, and conclusions that emanated from the symposium.


Energy Metabolism/immunology , Immune System/immunology , Immunity, Innate/immunology , Inflammation/immunology , Animals , Humans
7.
Proc Natl Acad Sci U S A ; 117(22): 12281-12287, 2020 06 02.
Article En | MEDLINE | ID: mdl-32424099

Sepsis is a life-threatening organ dysfunction condition caused by a dysregulated host response to an infection. Here we report that the circulating levels of growth and differentiation factor-15 (GDF15) are strongly increased in septic shock patients and correlate with mortality. In mice, we find that peptidoglycan is a potent ligand that signals through the TLR2-Myd88 axis for the secretion of GDF15, and that Gdf15-deficient mice are protected against abdominal sepsis due to increased chemokine CXC ligand 5 (CXCL5)-mediated recruitment of neutrophils into the peritoneum, leading to better local bacterial control. Our results identify GDF15 as a potential target to improve sepsis treatment. Its inhibition should increase neutrophil recruitment to the site of infection and consequently lead to better pathogen control and clearance.


Bacteremia/immunology , Chemokine CXCL5/immunology , Growth Differentiation Factor 15/immunology , Neutrophils/immunology , Animals , Bacteremia/genetics , Bacteremia/microbiology , Bacteremia/prevention & control , Chemokine CXCL5/genetics , Female , Growth Differentiation Factor 15/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophil Infiltration , Peritoneal Cavity/microbiology
8.
Mol Metab ; 31: 67-84, 2020 01.
Article En | MEDLINE | ID: mdl-31918923

OBJECTIVE: Obesity is the result of positive energy balance. It can be caused by excessive energy consumption but also by decreased energy dissipation, which occurs under several conditions including when the development or activation of brown adipose tissue (BAT) is impaired. Here we evaluated whether iRhom2, the essential cofactor for the Tumour Necrosis Factor (TNF) sheddase ADAM17/TACE, plays a role in the pathophysiology of metabolic syndrome. METHODS: We challenged WT versus iRhom2 KO mice to positive energy balance by chronic exposure to a high fat diet and then compared their metabolic phenotypes. We also carried out ex vivo assays with primary and immortalized mouse brown adipocytes to establish the autonomy of the effect of loss of iRhom2 on thermogenesis and respiration. RESULTS: Deletion of iRhom2 protected mice from weight gain, dyslipidemia, adipose tissue inflammation, and hepatic steatosis and improved insulin sensitivity when challenged by a high fat diet. Crucially, the loss of iRhom2 promotes thermogenesis via BAT activation and beige adipocyte recruitment, enabling iRhom2 KO mice to dissipate excess energy more efficiently than WT animals. This effect on enhanced thermogenesis is cell-autonomous in brown adipocytes as iRhom2 KOs exhibit elevated UCP1 levels and increased mitochondrial proton leak. CONCLUSION: Our data suggest that iRhom2 is a negative regulator of thermogenesis and plays a role in the control of adipose tissue homeostasis during metabolic disease.


Carrier Proteins/metabolism , Obesity/metabolism , Thermogenesis , Animals , Diet, High-Fat/adverse effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/chemically induced
9.
Mediators Inflamm ; 2019: 8146257, 2019.
Article En | MEDLINE | ID: mdl-31772507

Acute appendicitis is the most frequent surgical abdominal emergency, but its etiology remains poorly understood. Histological examination of the appendix, following its removal due to acute appendicitis, consistently shows features in common with bronchial asthma, suggesting an allergic reaction as a candidate etiologic factor. Here, we propose the concept of appendicular lavage and use it to study the levels of the Th2 cytokines IL-4, IL-5, and IL-9 in patients with a clinical diagnosis of acute appendicitis. The study group included 20 patients with a histological diagnosis of phlegmonous appendicitis, 13 patients with gangrenous appendicitis, and a control group of 8 patients with a clinical diagnosis of appendicitis but with normal histology. Cytokine levels were higher in acute appendicitis. The difference was more pronounced when comparing phlegmonous appendicitis with nonpathological appendicitis (p = 0.01) for IL-4 (48.3 vs. 21.3 pg/mL), IL-5 (29.2 vs. 8.0 pg/mL), and IL-9 (34.1 vs. 16.6 pg/mL). This Th2 cytokine profile is compatible with the hypothesis of allergy as an etiologic factor for acute appendicitis and may have important implications for the diagnosis, prevention, and treatment of this condition.


Appendicitis/etiology , Appendicitis/metabolism , Cytokines/metabolism , Hypersensitivity/complications , Hypersensitivity/metabolism , Th2 Cells/metabolism , Acute Disease , Adult , Female , Humans , Male , Middle Aged , Young Adult
10.
Front Med (Lausanne) ; 4: 187, 2017.
Article En | MEDLINE | ID: mdl-29164122

PURPOSE: Metabolic syndrome and cardiovascular disease are strongly associated with obstructive sleep apnea syndrome (OSAS), which causes substantial changes to normal circadian physiological functions, including metabolic pathways. Because core clock genes are known to be modulated by sleep/vigilance cycles, we asked whether the expression level of mRNA coding for clock genes is altered in non-treated OSAS patients and if it can be corrected by standard continuous positive airway pressure (CPAP) treatment. METHODS: Peripheral blood was collected from male patients diagnosed with severe OSAS (apnea-hypopnea index ≥ 30/h) before and after treatment initiation. qPCR was used to measure mRNA levels of genes associated with the central circadian pacemaker including CLOCK, BMAL1, Cry1, Cry2, and three Period genes (Per 1, 2, 3) in peripheral blood mononuclear cells (PBMCs). RESULTS: We found statistically significant differences for CLOCK (p-value = 0.022) expression in PBMCs of OSAS patients which were not reverted by treatment with CPAP. We have also found a substantial decrease in the slow wave sleep (SWS) content in OSAS patients (p-value < 0.001) that, contrary to REM sleep, was not corrected by CPAP (p-value = 0.875). CONCLUSION: CPAP treatment does not correct substantial changes in expression of core clock genes in OSAS patients. Because CPAP treatment is also unable to normalize the SWS in these patients, it is likely that additional therapeutic interventions that increase SWS content and complement the benefits of CPAP are required to more effectively reduce the known increased cardiovascular risk associated with OSAS patients.

11.
Immunity ; 39(5): 874-84, 2013 Nov 14.
Article En | MEDLINE | ID: mdl-24184056

Severe sepsis remains a poorly understood systemic inflammatory condition with high mortality rates and limited therapeutic options in addition to organ support measures. Here we show that the clinically approved group of anthracyclines acts therapeutically at a low dose regimen to confer robust protection against severe sepsis in mice. This salutary effect is strictly dependent on the activation of DNA damage response and autophagy pathways in the lung, as demonstrated by deletion of the ataxia telangiectasia mutated (Atm) or the autophagy-related protein 7 (Atg7) specifically in this organ. The protective effect of anthracyclines occurs irrespectively of pathogen burden, conferring disease tolerance to severe sepsis. These findings demonstrate that DNA damage responses, including the ATM and Fanconi Anemia pathways, are important modulators of immune responses and might be exploited to confer protection to inflammation-driven conditions, including severe sepsis.


Anthracyclines/pharmacology , Anti-Bacterial Agents/pharmacology , DNA Repair/drug effects , Lung/drug effects , Peritonitis/drug therapy , Sepsis/prevention & control , Adenoviridae Infections/immunology , Animals , Anthracyclines/therapeutic use , Anti-Bacterial Agents/therapeutic use , Ataxia Telangiectasia Mutated Proteins/deficiency , Ataxia Telangiectasia Mutated Proteins/physiology , Autophagy-Related Protein 7 , Cecum/injuries , DNA Damage , Epirubicin/administration & dosage , Epirubicin/pharmacology , Epirubicin/therapeutic use , Fanconi Anemia Complementation Group D2 Protein/physiology , Inflammation , Inflammation Mediators/analysis , Injections, Intraperitoneal , Lung/metabolism , Meropenem , Mice , Mice, Inbred C57BL , Microtubule-Associated Proteins/deficiency , Microtubule-Associated Proteins/physiology , Organ Specificity , Peritonitis/etiology , Peritonitis/genetics , Peritonitis/immunology , Peritonitis/physiopathology , Respiratory Tract Infections/immunology , Shock, Septic/prevention & control , Thienamycins/therapeutic use , Whole-Body Irradiation
12.
Biomacromolecules ; 13(9): 2906-16, 2012 Sep 10.
Article En | MEDLINE | ID: mdl-22901277

Herein, we report that VEGF-functionalized dextran (dexOx-VEGF) is comparatively superior to free VEGF in prolonging the phosphorylation of VEGF receptor 2 (VEGFR-2). Both dexOx-VEGF and free VEGF activate VEGFR-2, and the complexes are internalized into early endosomes (EEA1(+) vesicles) and then transported to lysosomes (Rab7(+) vesicles). However, after cell activation, dexOx-VEGF is preferentially colocalized in early endosomes where VEGF signaling is still active while free VEGF is preferentially transported to late endosomes or lysosomes. We further show that dexOx-VEGF after phosphorylation of VEGF receptor 2 induces an increase of intracellular Ca(2+) and activates VEGF downstream effectors such as Akt and extracellular signal-regulated kinase (ERK1/2) proteins. Under specific conditions, the activation level is different from the one observed for free VEGF, thus suggesting mechanistic differences, which is illustrated by cell migration and cord-like formation studies. DexOx-VEGF can be cross-linked with adipic acid dihydrazide to form a degradable gel, which in turn can be incorporated in a fibrin gel containing endothelial cells (ECs) to modulate their activity. We envision that these constructs might be beneficial to extend the pro-angiogenic activity of VEGF in ischemic tissues and to modulate the biological activity of vascular cells.


Dextrans/chemistry , Endosomes/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Lysosomes/drug effects , Vascular Endothelial Growth Factor A/chemistry , Calcium/metabolism , Cell Movement/drug effects , Cell Survival/drug effects , Cytoplasm/drug effects , Cytoplasm/metabolism , Endocytosis/drug effects , Endosomes/metabolism , Gene Expression/drug effects , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Hydrogels , Lysosomes/metabolism , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Phosphorylation/drug effects , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Protein Isoforms/pharmacology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/pharmacology , Vascular Endothelial Growth Factor Receptor-2/chemistry , Vascular Endothelial Growth Factor Receptor-2/metabolism
13.
PLoS One ; 6(1): e16114, 2011 Jan 24.
Article En | MEDLINE | ID: mdl-21283630

In this study, we developed a methodology to improve the survival, vascular differentiation and regenerative potential of umbilical cord blood (UCB)-derived hematopoietic stem cells (CD34(+) cells), by co-culturing the stem cells in a 3D fibrin gel with CD34(+)-derived endothelial cells (ECs). ECs differentiated from CD34(+) cells appear to have superior angiogenic properties to fully differentiated ECs, such as human umbilical vein endothelial cells (HUVECs). Our results indicate that the pro-survival effect of CD34(+)-derived ECs on CD34(+) cells is mediated, at least in part, by bioactive factors released from ECs. This effect likely involves the secretion of novel cytokines, including interleukin-17 (IL-17) and interleukin-10 (IL-10), and the activation of the ERK 1/2 pathway in CD34(+) cells. We also show that the endothelial differentiation of CD34(+) cells in co-culture with CD34(+)-derived ECs is mediated by a combination of soluble and insoluble factors. The regenerative potential of this co-culture system was demonstrated in a chronic wound diabetic animal model. The co-transplantation of CD34(+) cells with CD34(+)-derived ECs improved the wound healing relatively to controls, by decreasing the inflammatory reaction and increasing the neovascularization of the wound.


Endothelial Cells/cytology , Neovascularization, Physiologic , Stem Cells/cytology , Wound Healing , Antigens, CD34 , Blood Vessels/cytology , Cell Differentiation , Cell Survival , Coculture Techniques , Endothelial Cells/metabolism , Humans , Inflammation , Stem Cells/physiology , Umbilical Veins/cytology
...