Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Colloids Surf B Biointerfaces ; 240: 113993, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38810464

ABSTRACT

Development of high-performance joint injection lubricants has become the focus in the field of osteoarthritis treatment. Herein, natural product of angelica essential oil combined with the graphene oxide were prepared to the stable Pickering emulsion as a biological lubricant. The tribological properties of the Pickering emulsion under different friction conditions were studied. The lubricating mechanism was revealed and the biological activities were evaluated. Results showed that the prepared Pickering emulsion displayed superior lubrication property at the Ti6Al4V biological material interface. The maximum friction reduction and anti-wear abilities of the Pickering emulsion were improved by 36% and 50% compared to water, respectively. This was primarily due to the action of the double-layer lubrication films composed of the graphene oxide and angelica essential oil molecules. It was worth noting that the friction reduction effect of the Pickering emulsion at the natural cartilage interface was higher about 19% than that of HA used in clinic for OA commonly. In addition, the Pickering emulsion also displayed antioxidant activity and cell biocompatibility, showing a good clinical application prospect in the future.


Subject(s)
Angelica , Emulsions , Lubrication , Oils, Volatile , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Emulsions/chemistry , Angelica/chemistry , Biological Products/chemistry , Biological Products/pharmacology , Graphite/chemistry , Graphite/pharmacology , Lubricants/chemistry , Lubricants/pharmacology , Humans , Surface Properties , Particle Size , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Cell Survival/drug effects
2.
Int J Pharm ; 659: 124263, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38815639

ABSTRACT

Periodontitis is a multifactorial inflammatory disease characterized by severe alveolar bone damage and attachment loss. The imbalance of T help 17 (Th17) / regulatory T cells (Treg) induces excessive interleukin (IL)-17, which leads to alveolar bone damage and aggravates the development of periodontitis. Therefore, we proposed a therapeutic strategy to restore Th17/Treg homeostasis by interfering reactive oxygen species (ROS)-macrophage polarization cascade using active targeting microemulsions-based thermosensitive hydrogel. Folic acid-modified quercetin-loaded microemulsions (FA-Qu-MEs) were dispersed in poloxamer 407 and poly(N-isopropylacrylamide) matrix of hydrogel (FA-Qu-MEs@Gel). FA-Qu-MEs@Gel could be locally injected into the periodontal pocket and sustainedly release drugs. FA-Qu-MEs exhibited excellent ROS scavenging potency by targeting macrophages, resulting M1 phenotype macrophage from to M2 phenotype macrophage. Subsequently, the phenotypic changes of macrophages lead to decreased expression of IL-6 and tumor necrosis factor-α, which inhibited activated Th17, while IL-10 secreted by M2 macrophages promoted Treg differentiation. Finally, the restored Th17/Treg homeostasis reduced the level of IL-17 to accelerate alveolar bone regeneration. This study deigns a novel system that promote alveolar bone regeneration by remodeling Th17/Treg homeostasis via regulating ROS-macrophages polarization cascade for periodontitis treatment.


Subject(s)
Emulsions , Homeostasis , Hydrogels , Macrophages , Periodontitis , Reactive Oxygen Species , T-Lymphocytes, Regulatory , Th17 Cells , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , Reactive Oxygen Species/metabolism , Periodontitis/drug therapy , Periodontitis/immunology , Animals , Th17 Cells/drug effects , Th17 Cells/immunology , Hydrogels/administration & dosage , Homeostasis/drug effects , Macrophages/drug effects , Macrophages/immunology , Mice , Male , Poloxamer/chemistry , RAW 264.7 Cells , Acrylic Resins/chemistry , Bone Regeneration/drug effects , Mice, Inbred C57BL
3.
Eur J Pharm Sci ; 196: 106762, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38614153

ABSTRACT

Propolis has a long ethnopharmacological history for oral periodontal diseases treatment. Propolis flavonoids are main active components for anti-inflammation and tissue protection. However, the intractable dissolution properties of propolis flavonoids and complex oral environment pose great challenges for periodontal delivery. In addition, the therapeutic mechanism as well as the therapeutic correlation of inflammation resolution and tissue regeneration remain unclear for propolis flavonoids. In this study, we constructed an in situ thermosensitive depot systems using total flavonoids from propolis-loaded cubic liquid crystals (TFP-CLC) hydrogel for periodontal delivery. TFP-CLC inhibited inflammatory cell infiltration, reactive oxygen species and the expression of inflammatory cytokines of NF-κB and IL-1ß. In addition, alveolar bone and collagen were significantly regenerated after TFP-CLC administration according to micro-CT and immunohistochemistry. Mechanism studies suggested that TFP-CLC alleviated inflammation and promoted alveolar bone repair via regulating TLR4/MyD88/NF-κB p65 and RANK/NF-κB signaling pathways, respectively. Correlation analysis further confirmed that the inflammatory resolution produced by TFP-CLC could accelerate periodontal tissue regeneration. In summary, TFP-CLC is a promising multifunctional in situ thermo-sensitive hydrogel depots for periodontitis treatment.

4.
Int J Biol Macromol ; 261(Pt 2): 129825, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309402

ABSTRACT

Raspberry, a traditional medicine food homology species, has important benefits in patients with metabolic syndrome. However, the mechanism of raspberry polysaccharides (RP) on obesity remains unclear. In our study, we showed that RP intervention is negatively associated with body weight gain, hyperlipidemia, inflammation, and fat accumulation in obese mice. RP ameliorated HFD-induced gut microbiota dysbiosis, produced short-chain fatty acids, maintained intestinal barrier integrity, and prevented metabolic endotoxemia, manifested by decreased host lipopolysaccharide level, and increased colon expression of tight junction proteins. These effects might be related with driven by a SCFAs-producing bacterium and downregulation of TLR4/NF-κB signaling transduction. Notably, the abundance of Ruminococcaceae_UCG - 014, Lactobacillus taiwanensis, Bifidobacterium pseudolongum, and Turicibacter are markedly correlated with enhanced intestinal barrier function induced by RP treatment. Thus, we believe that RP could be as a potential health supplement or prebiotic for obesity therapy.


Subject(s)
Gastrointestinal Microbiome , Rubus , Animals , Mice , Humans , Fruit/metabolism , Obesity/metabolism , Inflammation/drug therapy , Inflammation/prevention & control , Lipopolysaccharides/pharmacology , Diet, High-Fat/adverse effects , Mice, Inbred C57BL
5.
J Ethnopharmacol ; 319(Pt 3): 117324, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37852336

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: In traditional Chinese medicine, propolis has been used for treating oral diseases for centuries, widely. Flavonoid extract is the main active ingredient in propolis, which has attracted extensive attention in recent years. AIM OF THE STUDY: The objective and novelty of the current study aims to identify the mechanism of total flavonoid extract of propolis (TFP) for the treatment of periodontitis, and evaluate the therapeutic effect of TFP-loaded liquid crystal hydrogel (TFP-LLC) in rats with periodontitis. METHODS: In this study, we used lipopolysaccharide-stimulated periodontal ligament stem cells (PDLSCs) to construct in vitro inflammation model, and investigated the anti-inflammatory effect of TFP by expression levels of inflammatory factors. Osteogenic differentiation was assessed using alkaline phosphatase activity and alizarin red staining. Meanwhile, the expression of toll like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), nuclear factor-kappa B (NF-κB), receptor activator of NF-κB (RANK) etc, were quantitated to investigate the therapeutic mechanism of TFP. Finally, we constructed TFP-LLC using a self-emulsification method and administered it to rats with periodontitis via periodontal pocket injection to evaluate the therapeutic effects. The therapeutic index, microcomputed tomography (Micro-CT), H&E staining, TRAP staining, and Masson staining were used for this evaluation. RESULTS: TFP reduced the expression of TLR4, MyD88, NF-κB and inflammatory factor in lipopolysaccharide-stimulated PDLSCs. Meanwhile, TFP simultaneously regulating alkaline phosphatase, RANK, runt-associated transcription factor-2 and matrix metalloproteinase production to accelerate osteogenic differentiation and collagen secretion. In addition, TFP-LLC can stably anchor to the periodontal lesion site and sustainably release TFP. After four weeks of treatment with TFP-LLC, we observed a decrease in the levels of NF-κB and interleukin-1ß (IL-1ß) in the periodontal tissues of rats, as well as a significant reduction in inflammation in HE staining. Similarly, Micro CT results showed that TFP-LLC could significantly inhibit alveolar bone resorption, increase bone mineral density (BMD) and reduce trabecular bone space (Tb.Sp) in rats with periodontitis. CONCLUSION: Collectively, we have firstly verified the therapeutic effects and mechanisms of TFP in PDLSCs for periodontitis treatment. Our results indicate that TFP perform anti-inflammatory and tissue repair activities through TLR4/MyD88/NF-κB and RANK/NF-κB pathways in PDLSCs. Meanwhile, for the first time, we employed LLC delivery system to load TFP for periodontitis treatment. The results showed that TFP-LLC could be effectively retained in the periodontal pocket and exerted a crucial role in inflammation resolution and periodontal tissue regeneration.


Subject(s)
Alveolar Bone Loss , Periodontitis , Propolis , Animals , Rats , Periodontal Ligament , Toll-Like Receptor 4 , Myeloid Differentiation Factor 88 , NF-kappa B , Propolis/pharmacology , Propolis/therapeutic use , Periodontal Pocket , Alkaline Phosphatase , Lipopolysaccharides , Osteogenesis , X-Ray Microtomography , Periodontitis/drug therapy , Periodontium , Inflammation/drug therapy , Adaptor Proteins, Signal Transducing , Alveolar Bone Loss/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Plant Extracts
SELECTION OF CITATIONS
SEARCH DETAIL