Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 61
1.
Biochim Biophys Acta Mol Basis Dis ; 1869(8): 166840, 2023 12.
Article En | MEDLINE | ID: mdl-37558006

The process of metastasis is complex and often impossible to be recognized in conventional clinical diagnosis. Lymph node metastasis (LNM) of bladder carcinoma (BC) is often associated with muscle-invasive tumors. To prevent and recognize LNM, the standard treatment includes radical cystectomy with lymph node dissection and histological examination. Here, we propose infrared (IR) microscopy as a tool for the prediction of LNM. For this purpose, IR images of bladder biopsies from patients with diagnosed non-metastatic early (E BC) and advanced (A BC), as well as metastatic advanced (M BC) bladder cancer were first collected. Furthermore, this dataset was complemented with images of the secondary tumors from the lymph nodes (M LN) of the M BC patients. Unsupervised clustering was used to extract tissue structures from IR images to create a data set comprising 382 IR spectra of non-metastatic bladder tumors and 241 metastatic ones. Based on that, we next established discrimination models using PLS-DA with repeated random sampling double cross-validation, and permutation test to perform the classification. The accuracy of BC metastasis prediction from IR bladder biopsies was 83 % and 78 % for early and advanced BC, respectively, herein demonstrating a proof-of-concept IR detection of BC metastasis. The analysis of spectral profiles additionally showed molecular composition similarity between metastatic bladder and lymph node tumors. We also determined spectral biomarkers of LNM that are associated with sugar metabolism, remodeling of extracellular matrix, and morphological features of cancer cells. Our approach can improve clinical decision-making in urological oncology.


Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Humans , Urinary Bladder/metabolism , Carcinoma, Transitional Cell/metabolism , Carcinoma, Transitional Cell/pathology , Carcinoma, Transitional Cell/surgery , Lymphatic Metastasis/pathology , Fourier Analysis , Urinary Bladder Neoplasms/pathology
2.
Analyst ; 148(17): 3986-3991, 2023 Aug 21.
Article En | MEDLINE | ID: mdl-37539806

A fast and accurate assessment of liver steatosis is crucial during liver transplantation surgery as it can negatively impact its success. Recent research has shown that near-infrared (NIR) and attenuated total reflectance-Fourier transform mid-infrared (ATR-FTIR) spectroscopy could be used as real-time quantitative tools to assess steatosis during abdominal surgery. Here, in the frame of a clinical study, we explore the performance of NIR and ATR-FTIR spectroscopy for the direct assessment of steatosis in liver tissues. Results show that both NIR and ATR-FTIR spectroscopy are able to quantify the % of steatosis with cross-validation errors of 1.4 and 1.6%, respectively. Furthermore, the two portable instruments used both provided results within seconds and can be placed inside an operating room evidencing the potential of IR spectroscopy for initial characterization of grafts in liver transplantation surgery. We also evaluated the complementarity of the spectral ranges through correlation spectroscopy.


Fatty Liver , Organ Transplantation , Humans , Spectroscopy, Fourier Transform Infrared/methods , Spectroscopy, Near-Infrared/methods
3.
Analyst ; 148(13): 3097-3106, 2023 Jun 26.
Article En | MEDLINE | ID: mdl-37313751

The assessment of liver steatosis is crucial in both hepatology and liver transplantation (LT) surgery. Steatosis can negatively impact the success of LT. Steatosis is a factor for excluding donated organs for LT, but the increasing demand for transplantable organs has led to the use of organs from marginal donors. The current standard for evaluating steatosis is a semi-quantitative grading based on the visual examination of a hematoxylin and eosin (H&E)-stained liver biopsy, but this method is time-consuming, subjective, and lacks reproducibility. Recent research has shown that infrared (IR) spectroscopy could be used as a real-time quantitative tool to assess steatosis during abdominal surgery. However, the development of IR-based methods has been hindered by the lack of appropriate quantitative reference values. In this study, we developed and validated digital image analysis methods for the quantitation of steatosis in H&E-stained liver sections using univariate and multivariate strategies including linear discriminant analysis (LDA), quadratic DA, logistic regression, partial least squares-DA (PLS-DA), and support vector machines. The analysis of 37 tissue samples with varying grades of steatosis demonstrates that digital image analysis provides accurate and reproducible reference values that improve the performance of IR spectroscopic models for steatosis quantification. A PLS model in the 1810-1052 cm-1 region using first derivative ATR-FTIR spectra provided RMSECV = 0.99%. The gained improvement in accuracy critically enhances the applicability of Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) to support an objective graft evaluation at the operation room, which might be especially relevant in cases of marginal liver donors to avoid unnecessary graft explantation.


Fatty Liver , Humans , Spectroscopy, Fourier Transform Infrared/methods , Reproducibility of Results , Spectrophotometry, Infrared , Fatty Liver/diagnostic imaging , Fatty Liver/pathology , Discriminant Analysis , Least-Squares Analysis
4.
Nutrients ; 15(5)2023 Feb 22.
Article En | MEDLINE | ID: mdl-36904100

Human milk (HM) is a complex biofluid containing a wide cell variety including epithelial cells and leukocytes. However, the cellular compositions and their phenotypic properties over the course of lactation are poorly understood. The aim of this preliminary study was to characterize the cellular metabolome of HM over the course of lactation. Cells were isolated via centrifugation and the cellular fraction was characterized via cytomorphology and immunocytochemical staining. Cell metabolites were extracted and analyzed using ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-QqTOF-MS) in the positive and negative electrospray ionization modes. Immunocytochemical analysis revealed a high variability of the number of detected cells with relative median abundances of 98% of glandular epithelial cells, 1% of leukocytes, and 1% of keratinocytes. Significant correlations between the milk postnatal age with percentage of epithelial cells and leukocytes, and with total cell count were observed. Results from the Hierarchical Cluster Analysis of immunocytochemical profiles were very similar to those observed in the analysis of the metabolomic profiles. In addition, metabolic pathway analysis showed alterations in seven metabolic pathways correlating with postnatal age. This work paves the way for future investigations on changes in the metabolomic fraction of the cellular compartment of HM.


Lactation , Milk, Human , Female , Humans , Lactation/metabolism , Metabolomics/methods , Mass Spectrometry/methods , Breast Feeding , Metabolome , Chromatography, High Pressure Liquid/methods
5.
Analyst ; 148(2): 278-285, 2023 Jan 16.
Article En | MEDLINE | ID: mdl-36525038

Urothelial bladder carcinoma (BC) is primarily diagnosed with a subjective examination of biopsies by histopathologists, but accurate diagnosis remains time-consuming and of low diagnostic accuracy, especially for low grade non-invasive BC. We propose a novel approach for high-throughput BC evaluation by combining infrared (IR) microscopy of bladder sections with machine learning (partial least squares-discriminant analysis) to provide an automated prediction of the presence of cancer, invasiveness and grade. Cystoscopic biopsies from 50 patients with clinical suspicion of BC were histologically examined to assign grades and stages. Adjacent tissue cross-sections were IR imaged to provide hyperspectral datasets and cluster analysis segregated IR images to extract the average spectra of epithelial and subepithelial tissues. Discriminant models, which were validated using repeated random sampling double cross-validation, showed sensitivities (AUROC) ca. 85% (0.85) for the identification of cancer in epithelium and subepithelium. The diagnosis of non-invasive and invasive cases showed sensitivity values around 80% (0.84-0.85) and 76% (0.73-0.80), respectively, while the identification of low and high grade BC showed higher sensitivity values 87-88% (0.91-0.92). Finally, models for the discrimination between cancers with different invasiveness and grades showed more modest AUROC values (0.67-0.72). This proves the high potential of IR imaging in the development of ancillary platforms to screen bladder biopsies.


Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Humans , Carcinoma, Transitional Cell/pathology , Urinary Bladder Neoplasms/diagnostic imaging , Urinary Bladder Neoplasms/pathology , Urinary Bladder/pathology , Machine Learning , Diagnostic Imaging , Neoplasm Invasiveness
6.
Sci Rep ; 12(1): 21849, 2022 12 17.
Article En | MEDLINE | ID: mdl-36528645

Patients worldwide require therapeutic transfusions of packed red blood cells (pRBCs), which is applied to the high-risk patients who need periodic transfusions due to leukemia, lymphoma, myeloma and other blood diseases or disorders. Contrary to the general hospital population where the transfusions are carried out mainly for healthy trauma patients, in case of high-risk patients the proper quality of pRBCs is crucial. This leads to an increased demand for efficient technology providing information on the pRBCs alterations deteriorating their quality. Here we present the design of an innovative, label-free, noninvasive, rapid Raman spectroscopy-based method for pRBCs quality evaluation, starting with the description of sample measurement and data analysis, through correlation of spectroscopic results with reference techniques' outcomes, and finishing with methodology verification and its application in clinical conditions. We have shown that Raman spectra collected from the pRBCs supernatant mixture with a proper chemometric analysis conducted for a minimum one ratio of integral intensities of the chosen Raman marker bands within the spectrum allow evaluation of the pRBC quality in a rapid, noninvasive, and free-label manner, without unsealing the pRBCs bag. Subsequently, spectroscopic data were compared with predefined reference values, either from pRBCs expiration or those defining the pRBCs quality, allowing to assess their utility for transfusion to patients with acute myeloid leukemia (AML) and lymphoblastic leukemia (ALL).


Erythrocyte Transfusion , Leukemia , Humans , Erythrocyte Transfusion/adverse effects , Blood Transfusion , Erythrocytes , Leukemia/diagnosis , Leukemia/therapy , Leukemia/etiology
7.
Sci Rep ; 12(1): 12158, 2022 07 15.
Article En | MEDLINE | ID: mdl-35840615

DNA double-strand breaks (DSBs) are typical DNA lesions that can lead to cell death, translocations, and cancer-driving mutations. The repair process of DSBs is crucial to the maintenance of genomic integrity in all forms of life. However, the limitations of sensitivity and special resolution of analytical techniques make it difficult to investigate the local effects of chemotherapeutic drugs on DNA molecular structure. In this work, we exposed DNA to the anticancer antibiotic bleomycin (BLM), a damaging factor known to induce DSBs. We applied a multimodal approach combining (i) atomic force microscopy (AFM) for direct visualization of DSBs, (ii) surface-enhanced Raman spectroscopy (SERS) to monitor local conformational transitions induced by DSBs, and (iii) multivariate statistical analysis to correlate the AFM and SERS results. On the basis of SERS results, we identified that bands at 1050 cm-1 and 730 cm-1 associated with backbone and nucleobase vibrations shifted and changed their intensities, indicating conformational modifications and strand ruptures. Based on averaged SERS spectra, the PLS regressions for the number of DSBs caused by corresponding molar concentrations of bleomycin were calculated. The strong correlation (R2 = 0.92 for LV = 2) between the predicted and observed number of DSBs indicates, that the model can not only predict the number of DSBs from the spectra but also detect the spectroscopic markers of DNA damage and the associated conformational changes.


DNA Breaks, Double-Stranded , DNA Repair , Bleomycin/pharmacology , DNA/chemistry , DNA Damage
8.
Cells ; 11(9)2022 05 05.
Article En | MEDLINE | ID: mdl-35563861

Raman microspectroscopy is a label-free technique which is very suited for the investigation of pharmacokinetics of cellular uptake, mechanisms of interaction, and efficacies of drugs in vitro. However, the complexity of the spectra makes the identification of spectral patterns associated with the drug and subsequent cellular responses difficult. Indeed, multivariate methods that relate spectral features to the inoculation time do not normally take into account the kinetics involved, and important theoretical information which could assist in the elucidation of the relevant spectral signatures is excluded. Here, we propose the integration of kinetic equations in the modelling of drug uptake and subsequent cellular responses using Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) and tailored kinetic constraints, based on a system of ordinary differential equations. Advantages of and challenges to the methodology were evaluated using simulated Raman spectral data sets and real Raman spectra acquired from A549 and Calu-1 human lung cells inoculated with doxorubicin, in vitro. The results suggest a dependency of the outcome on the system of equations used, and the importance of the temporal resolution of the data set to enable the use of complex equations. Nevertheless, the use of tailored kinetic constraints during MCR-ALS allowed a more comprehensive modelling of the system, enabling the elucidation of not only the time-dependent concentration profiles and spectral features of the drug binding and cellular responses, but also an accurate computation of the kinetic constants.


Spectrum Analysis, Raman , Humans , Kinetics , Least-Squares Analysis , Multivariate Analysis , Spectrum Analysis, Raman/methods
10.
Lab Chip ; 21(24): 4743-4748, 2021 12 07.
Article En | MEDLINE | ID: mdl-34822714

Infrared spectroscopy (IR) enables the direct and rapid characterization of cells at the molecular level. Achieving a rapid and consistent cell preparation is critical for the development of point-of-care diagnostics for cell analysis. Here we introduce an open-source, 3D printed device for integrating the isolation, preconcentration, and measurement of attenuated total reflectance IR spectra of cells from biofluids. The tool comprises a disposable card for cytocentrifugation, equipped with magnets, which allows reproducible integration into the pathlength of the IR spectrophotometer. Preliminary results using cell culture media containing A549 cells indicate that this system enables a qualitative and quantitative characterization of cells down to 10 cells µL-1 by using a single and cost-effective device and within a few minutes.


Printing, Three-Dimensional , Spectrophotometry, Infrared , Spectroscopy, Fourier Transform Infrared
11.
Anal Methods ; 13(47): 5756-5763, 2021 12 09.
Article En | MEDLINE | ID: mdl-34816272

Blood screening is a fundamental part of disease diagnosis and monitoring health. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy offers an innovative solution to streamlining the process, especially for multianalyte detection in aqueous samples. However, samples always undergo a storage phase before they are processed for testing and blood transfusion. In this study, we investigated the effect of standard storage procedures on the macromolecular composition of whole blood, and plasma collected in blood tubes for diagnostic purposes and initial screening of blood products. Periphery blood samples were collected from 10 volunteers and then stored for 14 days at 4 °C. Samples were stored as isolated plasma and whole blood to provide three different datasets, namely: (1) plasma stored independently, (2) plasma stored with other blood components and (3) whole blood. ATR-FTIR spectra of aqueous blood were acquired every 24 h from the time of collection on a portable ATR-FTIR spectrophotometer to monitor the evolution of the macromolecular composition in each blood component. Principal component analysis (PCA), partial least squares regression (PLS-R) and multi-curve resolution alternate least squares (MCR-ALS) models were built to study changes in the spectra with the storage time and identify the key bands. Isolated plasma stored without red blood cells (RBCs) showed no changes over the 14 day period indicating limited degradation. By contrast, plasma stored with the other blood components showed visual and spectroscopic signs of degradation including increasing lipid bands and the amide I and II bands from haemoglobin (Hb). Ideally, for the application of IR spectroscopy in blood diagnostics and for initial screening of blood products, whole blood and isolated red blood cells can be stored for a maximum of 4 days at 4 °C in lithium-heparin anticoagulant tubes prior to spectral analysis before any signs of degradation. Isolated plasma, on the other hand, can be stored for much longer periods and shows no evidence of degradation in the spectra after 14 days.


Blood Specimen Collection , Blood , Quality Control , Spectroscopy, Fourier Transform Infrared , Ataxia Telangiectasia Mutated Proteins , Blood Specimen Collection/methods , Blood Specimen Collection/standards , Erythrocytes , Fourier Analysis , Humans , Least-Squares Analysis , Spectroscopy, Fourier Transform Infrared/methods
12.
Anal Chem ; 93(36): 12187-12194, 2021 09 14.
Article En | MEDLINE | ID: mdl-34459578

Spectral histopathology has shown promise for the classification and diagnosis of tumors with defined morphology, but application in tumors with variable or diffuse morphologies is yet to be investigated. To address this gap, we evaluated the application of Fourier transform infrared (FTIR) imaging as an accessory diagnostic tool for canine hemangiosarcoma (HSA), a vascular endothelial cell cancer that is difficult to diagnose. To preserve the delicate vascular tumor tissue structure, and potential classification of single endothelial cells, paraffin removal was not performed, and a partial least square discrimination analysis (PLSDA) and Random Forest (RF) models to classify different tissue types at individual pixel level were established using a calibration set (24 FTIR images from 13 spleen specimens). Next, the prediction capability of the PLSDA model was tested with an independent test set (n = 11), resulting in 74% correct classification of different tissue types at an individual pixel level. Finally, the performance of the FTIR spectropathology and chemometric algorithm for diagnosis of HSA was established in a blinded set of tissue samples (n = 24), with sensitivity and specificity of 80 and 81%, respectively. Taken together, these results show that FTIR imaging without paraffin removal can be applied to tumors with diffuse morphology, and this technique is a promising tool to assist in canine splenic HSA differential diagnosis.


Hemangiosarcoma , Animals , Dogs , Endothelial Cells , Hemangiosarcoma/diagnostic imaging , Hemangiosarcoma/veterinary , Least-Squares Analysis , Spectroscopy, Fourier Transform Infrared , Spleen
13.
Food Chem ; 365: 130442, 2021 Dec 15.
Article En | MEDLINE | ID: mdl-34237569

We evaluated the use of attenuated total reflectance infrared spectroscopy for simultaneous in situ quantification of the nutritional composition of liquid food stuffs in the industrial kitchen context. Different methodologies were compared, including dry and wet acquisition along with instrument parameters and measurement times of 4 and 60 s. The most effective technique was 1-minute measurement, with prediction errors of 2.6, 0.7, 1.0, 2.2, 0.8, 2.4 g/100 mL and 150 Kcal, for carbohydrates, proteins, fat, sugars, saturated fat, water and energy values, respectively.The 4-second method resulted in larger errors but was more applicable for inline measurements. Dry measurements successfully predicted the fractions of proteins, fat, carbohydrates, and sugars, relative to total solids. An app was created to facilitate implementation in a kitchen environment. Compared with other techniques recommended by the FAO, the approach offered a simple alternative for simultaneous prediction of nutritional parameters in an industrial kitchen set-up.


Carbohydrates , Sugars , Least-Squares Analysis , Proteins , Spectroscopy, Fourier Transform Infrared
14.
Methods Mol Biol ; 2350: 299-312, 2021.
Article En | MEDLINE | ID: mdl-34331293

Infrared (IR) and Raman spectroscopies are being increasingly employed for the label-free analysis of biochemical samples. Both are vibrational imaging techniques, but they provide complementary information about the chemical composition of the sample, and thus the integration of Raman and IR images leads to a comprehensive understanding of the samples. Here, we summarize the steps needed for performing multiplexed infrared and Raman imaging, identifying and overcoming the two main challenges: first, the technical difficulties caused by the incompatibilities of the techniques and, second, the necessity to extract the information from the large number of vibrational variables found in both IR and Raman spectra.


Spectroscopy, Fourier Transform Infrared/methods , Spectrum Analysis, Raman/methods , Animals , Humans , Image Processing, Computer-Assisted/methods , Immunohistochemistry , Software
15.
Analyst ; 146(14): 4709, 2021 Jul 12.
Article En | MEDLINE | ID: mdl-34136888

Correction for 'Synchrotron macro ATR-FTIR microspectroscopy for high-resolution chemical mapping of single cells' by Jitraporn Vongsvivut et al., Analyst, 2019, 144, 3226-3238, DOI: 10.1039/C8AN01543K.

16.
Appl Spectrosc ; 75(8): 1003-1011, 2021 Aug.
Article En | MEDLINE | ID: mdl-34110943

The global fight against mosquito-borne viral diseases has in recent years been bolstered by the introduction of the endosymbiotic bacteria Wolbachia to vector populations, which in host mosquitoes suppresses the transmissibility of several viruses. Researchers engaged on this front of the battle often need to know the Wolbachia infection status of individual mosquitoes, as the intervention progresses and the mosquitoes become established in the target population. Previously, we successfully applied attenuated total reflection Fourier transform infrared spectroscopy to the detection of Wolbachia in adult Aedes aegypti mosquitoes; here we apply the same principles to Aedes eggs, with sensitivity and selectivity > 0.95. Further, we successfully distinguish between infections in eggs of the wMel and wMelPop strains of Wolbachia pipientis, with a classification error of 3%. The disruption of host lipid profile by Wolbachia is found to be a key driver in spectral differences between these sample classes.


Aedes , Wolbachia , Animals , Fourier Analysis , Mosquito Vectors , Spectroscopy, Fourier Transform Infrared
17.
Angew Chem Int Ed Engl ; 60(31): 17102-17107, 2021 07 26.
Article En | MEDLINE | ID: mdl-34043272

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in an unprecedented need for diagnostic testing that is critical in controlling the spread of COVID-19. We propose a portable infrared spectrometer with purpose-built transflection accessory for rapid point-of-care detection of COVID-19 markers in saliva. Initially, purified virion particles were characterized with Raman spectroscopy, synchrotron infrared (IR) and AFM-IR. A data set comprising 171 transflection infrared spectra from 29 subjects testing positive for SARS-CoV-2 by RT-qPCR and 28 testing negative, was modeled using Monte Carlo Double Cross Validation with 50 randomized test and model sets. The testing sensitivity was 93 % (27/29) with a specificity of 82 % (23/28) that included positive samples on the limit of detection for RT-qPCR. Herein, we demonstrate a proof-of-concept high throughput infrared COVID-19 test that is rapid, inexpensive, portable and utilizes sample self-collection thus minimizing the risk to healthcare workers and ideally suited to mass screening.


COVID-19 Testing/methods , COVID-19/diagnosis , Saliva/chemistry , Animals , Chlorocebus aethiops , Cohort Studies , Discriminant Analysis , Humans , Least-Squares Analysis , Monte Carlo Method , Point-of-Care Testing , Proof of Concept Study , SARS-CoV-2 , Sensitivity and Specificity , Specimen Handling , Spectrophotometry, Infrared , Vero Cells
18.
Appl Spectrosc ; 75(6): 611-646, 2021 Jun.
Article En | MEDLINE | ID: mdl-33331179

The magnitude of infectious diseases in the twenty-first century created an urgent need for point-of-care diagnostics. Critical shortages in reagents and testing kits have had a large impact on the ability to test patients with a suspected parasitic, bacteria, fungal, and viral infections. New point-of-care tests need to be highly sensitive, specific, and easy to use and provide results in rapid time. Infrared spectroscopy, coupled to multivariate and machine learning algorithms, has the potential to meet this unmet demand requiring minimal sample preparation to detect both pathogenic infectious agents and chronic disease markers in blood. This focal point article will highlight the application of Fourier transform infrared spectroscopy to detect disease markers in blood focusing principally on parasites, bacteria, viruses, cancer markers, and important analytes indicative of disease. Methodologies and state-of-the-art approaches will be reported and potential confounding variables in blood analysis identified. The article provides an up to date review of the literature on blood diagnosis using infrared spectroscopy highlighting the recent advances in this burgeoning field.


Bacteria , Fungi , Algorithms , Humans , Spectrophotometry, Infrared , Spectroscopy, Fourier Transform Infrared
19.
Anal Chem ; 92(21): 14542-14549, 2020 11 03.
Article En | MEDLINE | ID: mdl-33084322

The estimation of steatosis in a liver graft is mandatory prior to liver transplantation, as the risk of graft failure increases with the level of infiltrated fat. However, the assessment of liver steatosis before transplantation is typically based on a qualitative or semiquantitative characterization by visual inspection and palpation and histological analysis. Thus, there is an unmet need for transplantation surgeons to have access to a diagnostic tool enabling an in situ fast classification of grafts prior to extraction. In this study, we have assessed an attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopic method compatible with the requirements of an operation room for the evaluation of the lipid contents in human livers. A set of 20 human liver biopsies obtained from organs intended for transplantation were analyzed by expert pathologists, ATR-FTIR spectroscopy, lipid biochemical analysis, and UPLC-ESI(+/-)TOFMS for lipidomic profiling. Comparative analysis of multisource data showed strong correlations between ATR-FTIR, clinical, and lipidomic information. Results show that ATR-FTIR captures a global picture of the lipid composition of the liver, along with information for the quantification of the triradylglycerol content in liver biopsies. Although the methodology performance needs to be further validated, results support the applicability of ATR-FTIR for the in situ determination of the grade of liver steatosis at the operation room as a fast, quantitative method, as an alternative to the qualitative and subjective pathological examination.


Liver Transplantation , Operating Rooms , Spectrophotometry, Infrared/methods , Humans , Time Factors
20.
J Biophotonics ; 13(12): e202000264, 2020 12.
Article En | MEDLINE | ID: mdl-32888394

Herein, we investigated the use of multimodal Raman and infrared (IR) spectroscopic microscopy for the elucidation of drug uptake and subsequent cellular responses. Firstly, we compared different methods for the analysis of the combined data. Secondly, we evaluated whether the combined analysis provided enough benefits to justify the fusion of the data. A459 cells inoculated with doxorubicin (DOX) at different times were fixed and analysed using each technique. Raman spectroscopy provided high sensitivity to DOX and enabled an accurate estimation of the drug uptake at each time point, whereas IR provided a better insight into the resultant changes in the biochemical composition of the cell. In terms of benefits of data fusion, 2D correlation analysis allowed the study of the relationship between IR and Raman variables, whereas the joint analysis of IR and Raman enabled the correlation of the different variables to be monitored over time. In summary, the complementary nature of IR and Raman makes the combination of these vibrational techniques an appealing tool to follow drug kinetics and cellular response.


Doxorubicin , Pharmaceutical Preparations , Biological Transport , Spectrophotometry, Infrared , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman
...