Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(10): eadl1122, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38446892

ABSTRACT

Coxsackievirus B (CVB) infection of pancreatic ß cells is associated with ß cell autoimmunity and type 1 diabetes. We investigated how CVB affects human ß cells and anti-CVB T cell responses. ß cells were efficiently infected by CVB in vitro, down-regulated human leukocyte antigen (HLA) class I, and presented few, selected HLA-bound viral peptides. Circulating CD8+ T cells from CVB-seropositive individuals recognized a fraction of these peptides; only another subfraction was targeted by effector/memory T cells that expressed exhaustion marker PD-1. T cells recognizing a CVB epitope cross-reacted with ß cell antigen GAD. Infected ß cells, which formed filopodia to propagate infection, were more efficiently killed by CVB than by CVB-reactive T cells. Our in vitro and ex vivo data highlight limited CD8+ T cell responses to CVB, supporting the rationale for CVB vaccination trials for type 1 diabetes prevention. CD8+ T cells recognizing structural and nonstructural CVB epitopes provide biomarkers to differentially follow response to infection and vaccination.


Subject(s)
Coxsackievirus Infections , Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Humans , CD8-Positive T-Lymphocytes , Antibodies , Epitopes , Peptides , Antiviral Agents
2.
bioRxiv ; 2023 Sep 17.
Article in English | MEDLINE | ID: mdl-37745505

ABSTRACT

Interferon (IFN)-α is the earliest cytokine signature observed in individuals at risk for type 1 diabetes (T1D), but its effect on the repertoire of HLA Class I (HLA-I)-bound peptides presented by pancreatic ß-cells is unknown. Using immunopeptidomics, we characterized the peptide/HLA-I presentation in in-vitro resting and IFN-α-exposed ß-cells. IFN-α increased HLA-I expression and peptide presentation, including neo-sequences derived from alternative mRNA splicing, post-translational modifications - notably glutathionylation - and protein cis-splicing. This antigenic landscape relied on processing by both the constitutive and immune proteasome. The resting ß-cell immunopeptidome was dominated by HLA-A-restricted ligands. However, IFN-α only marginally upregulated HLA-A and largely favored HLA-B, translating into a major increase in HLA-B-restricted peptides and into an increased activation of HLA-B-restricted vs. HLA-A-restricted CD8+ T-cells. A preferential HLA-B hyper-expression was also observed in the islets of T1D vs. non-diabetic donors, and we identified islet-infiltrating CD8+ T-cells from T1D donors reactive to HLA-B-restricted granule peptides. Thus, the inflammatory milieu of insulitis may skew the autoimmune response toward epitopes presented by HLA-B, hence recruiting a distinct T-cell repertoire that may be relevant to T1D pathogenesis.

3.
bioRxiv ; 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37662376

ABSTRACT

Coxsackievirus B (CVB) infection of pancreatic ß cells is associated with ß-cell autoimmunity. We investigated how CVB impacts human ß cells and anti-CVB T-cell responses. ß cells were efficiently infected by CVB in vitro, downregulated HLA Class I and presented few, selected HLA-bound viral peptides. Circulating CD8+ T cells from CVB-seropositive individuals recognized only a fraction of these peptides, and only another sub-fraction was targeted by effector/memory T cells that expressed the exhaustion marker PD-1. T cells recognizing a CVB epitope cross-reacted with the ß-cell antigen GAD. Infected ß cells, which formed filopodia to propagate infection, were more efficiently killed by CVB than by CVB-reactive T cells. Thus, our in-vitro and ex-vivo data highlight limited T-cell responses to CVB, supporting the rationale for CVB vaccination trials for type 1 diabetes prevention. CD8+ T cells recognizing structural and non-structural CVB epitopes provide biomarkers to differentially follow response to infection and vaccination.

4.
Article in English | MEDLINE | ID: mdl-36881406

ABSTRACT

Electro- and photochemical CO2 reduction (CO2R) is the quintessence of modern-day sustainable research. We report our studies on the electro- and photoinduced interfacial charge transfer occurring in a nanocrystalline mesoporous TiO2 film and two TiO2/iron porphyrin hybrid films (meso-aryl- and ß-pyrrole-substituted porphyrins, respectively) under CO2R conditions. We used transient absorption spectroscopy (TAS) to demonstrate that, under 355 nm laser excitation and an applied voltage bias (0 to -0.8 V vs Ag/AgCl), the TiO2 film exhibited a diminution in the transient absorption (at -0.5 V by 35%), as well as a reduction of the lifetime of the photogenerated electrons (at -0.5 V by 50%) when the experiments were conducted under a CO2 atmosphere changing from inert N2. The TiO2/iron porphyrin films showed faster charge recombination kinetics, featuring 100-fold faster transient signal decays than that of the TiO2 film. The electro-, photo-, and photoelectrochemical CO2R performance of the TiO2 and TiO2/iron porphyrin films are evaluated within the bias range of -0.5 to -1.8 V vs Ag/AgCl. The bare TiO2 film produced CO and CH4 as well as H2, depending on the applied voltage bias. In contrast, the TiO2/iron porphyrin films showed the exclusive formation of CO (100% selectivity) under identical conditions. During the CO2R, a gain in the overpotential values is obtained under light irradiation conditions. This finding was indicative of a direct transfer of the photogenerated electrons from the film to absorbed CO2 molecules and an observed decrease in the decay of the TAS signals. In the TiO2/iron porphyrin films, we identified the interfacial charge recombination processes between the oxidized iron porphyrin and the electrons of the TiO2 conduction band. These competitive processes are considered to be responsible for the diminution of direct charge transfer between the film and the adsorbed CO2 molecules, explaining the moderate performances of the hybrid films for the CO2R.

5.
Int J Mol Sci ; 23(9)2022 May 06.
Article in English | MEDLINE | ID: mdl-35563588

ABSTRACT

Non-coding RNA (ncRNA)-mediated targeting of various genes regulates the molecular mechanisms of the pathogenesis of hypertension (HTN). However, very few circulating long ncRNAs (lncRNAs) have been reported to be altered in essential HTN. The aim of our study was to identify a lncRNA profile in plasma and plasma exosomes associated with urinary albumin excretion in HTN by next-generation sequencing and to assess biological functions enriched in response to albuminuria using GO and KEGG analysis. Plasma exosomes showed higher diversity and fold change of lncRNAs than plasma, and low transcript overlapping was found between the two biofluids. Enrichment analysis identified different biological pathways regulated in plasma or exosome fraction, which were implicated in fatty acid metabolism, extracellular matrix, and mechanisms of sorting ncRNAs into exosomes, while plasma pathways were implicated in genome reorganization, interference with RNA polymerase, and as scaffolds for assembling transcriptional regulators. Our study found a biofluid specific lncRNA profile associated with albuminuria, with higher diversity in exosomal fraction, which identifies several potential targets that may be utilized to study mechanisms of albuminuria and cardiovascular damage.


Subject(s)
Exosomes , Hypertension , MicroRNAs , RNA, Long Noncoding , Albuminuria/genetics , Albuminuria/metabolism , Exosomes/genetics , Exosomes/metabolism , Female , Humans , Hypertension/metabolism , Male , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Untranslated/genetics
6.
Int J Mol Sci ; 23(2)2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35055008

ABSTRACT

Non-coding RNA (ncRNA), released into circulation or packaged into exosomes, plays important roles in many biological processes in the kidney. The purpose of the present study is to identify a common ncRNA signature associated with early renal damage and its related molecular pathways. Three individual libraries (plasma and urinary exosomes, and total plasma) were prepared from each hypertensive patient (with or without albuminuria) for ncRNA sequencing analysis. Next, an RNA-based transcriptional regulatory network was constructed. The three RNA biotypes with the greatest number of differentially expressed transcripts were long-ncRNA (lncRNA), microRNA (miRNA) and piwi-interacting RNA (piRNAs). We identified a common 24 ncRNA molecular signature related to hypertension-associated urinary albumin excretion, of which lncRNAs were the most representative. In addition, the transcriptional regulatory network showed five lncRNAs (LINC02614, BAALC-AS1, FAM230B, LOC100505824 and LINC01484) and the miR-301a-3p to play a significant role in network organization and targeting critical pathways regulating filtration barrier integrity and tubule reabsorption. Our study found an ncRNA profile associated with albuminuria, independent of biofluid origin (urine or plasma, circulating or in exosomes) that identifies a handful of potential targets, which may be utilized to study mechanisms of albuminuria and cardiovascular damage.


Subject(s)
Albuminuria/etiology , Cell-Free Nucleic Acids , Exosomes , Hypertension/blood , Hypertension/complications , RNA, Untranslated/genetics , Transcriptome , Albuminuria/diagnosis , Biomarkers , Blood Pressure , Disease Susceptibility , Female , Gene Expression Profiling , Gene Expression Regulation , Gene Regulatory Networks , Humans , Hypertension/diagnosis , Hypertension/etiology , Liquid Biopsy/methods , Male
7.
Front Immunol ; 12: 768133, 2021.
Article in English | MEDLINE | ID: mdl-34868025

ABSTRACT

Both the initiation and the resolution of inflammatory responses are governed by the sequential activation, migration, and control/suppression of immune cells at the site of injury. Bioactive lipids play a major role in the fine-tuning of this dynamic process in a timely manner. During inflammation and its resolution, polymorphonuclear cells (PMNs) and macrophages switch from producing pro-inflammatory prostaglandins and leukotrienes to specialized pro-resolving lipid mediators (SPMs), namely, lipoxins, resolvins, protectins, and maresins, which are operative at the local level to limit further inflammation and tissue injury and restore homeostasis. Accumulating evidences expand now the role and actions of these lipid mediators from innate to adaptive immunity. In particular, SPMs have been shown to contribute to the control of chronic inflammation, and alterations in their production and/or function have been associated with the persistence of several pathological conditions, including autoimmunity, in human and experimental models. In this review, we focus on the impact of pro-resolving lipids on T cells through their ability to modulate T-cell responses. In particular, the effects of the different families of SPMs to restrain effector T-cell functions while promoting regulatory T cells will be reviewed, along with the underlying mechanisms. Furthermore, the emerging concept of SPMs as new biological markers for disease diagnostic and progression and as putative therapeutic tools to regulate the development and magnitude of inflammatory and autoimmune diseases is discussed.


Subject(s)
Eicosanoids/pharmacology , Immunomodulating Agents/pharmacology , Inflammation Mediators/pharmacology , Lipoxins/pharmacology , T-Lymphocytes/drug effects , Cellular Reprogramming , Eicosapentaenoic Acid/analogs & derivatives , Eicosapentaenoic Acid/pharmacology , Humans , Inflammation Mediators/therapeutic use , T-Lymphocytes/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology
8.
Plants (Basel) ; 10(5)2021 May 16.
Article in English | MEDLINE | ID: mdl-34065656

ABSTRACT

The study of ecological succession to determine how plant communities re-assemble after a natural or anthropogenic disturbance has always been an important topic in ecology. The understanding of these processes forms part of the new theories of community assembly and species coexistence, and is attracting attention in a context of expanding human impacts. Specifically, new successional studies provide answers to different mechanisms of community assemblage, and aim to define the importance of deterministic or stochastic processes in the succession dynamic. Biotic limits, which depend directly on biodiversity (i.e., species competition), and abiotic filtering, which depends on the environment, become particularly important when they are exceeded, making the succession process more complicated to reach the previous disturbance stage. Plant functional traits (PFTs) are used in secondary succession studies to establish differences between abandonment stages or to compare types of vegetation or flora, and are more closely related to the functioning of plant communities. Dispersal limitation is a PFT considered an important process from a stochastic point of view because it is related to the establishing of plants. Related to it the soil seed bank plays an important role in secondary succession because it is essential for ecosystem functioning. Soil compounds and microbial community are important variables to take into account when studying any succession stage. Chronosequence is the best way to study the whole process at different time scales. Finally, our objective in this review is to show how past studies and new insights are being incorporated into the basis of classic succession. To further explore this subject we have chosen old-field recovery as an example of how a number of different plant communities, including annual and perennial grasslands and shrublands, play an important role in secondary succession.

9.
Hypertension ; 77(3): 960-971, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33486986

ABSTRACT

Urinary albumin excretion (UAE) is a marker of cardiovascular risk and renal damage in hypertension. MicroRNAs (miRNAs) packaged into exosomes function as paracrine effectors in cell communication and the kidney is not exempt. This study aimed to state an exosomal miRNA profile/signature associated to hypertension with increased UAE and the impact of profibrotic TGF-ß1 (transforming growth factor ß1) on exosomes miRNA release. Therefore, exosomes samples from patients with hypertension with/without UAE were isolated and characterized. Three individual and unique small RNA libraries from each subject were prepared (total plasma, urinary, and plasma-derived exosomes) for next-generation sequencing profiling. Differentially expressed miRNAs were over-represented in Kyoto Encyclopedia of Genes and Genomes pathways, and selected miRNAs were validated by real-time quantitative polymerase chain reaction in a confirmation cohort. Thus, a signature of 29 dysregulated circulating miRNAs was identified in UAE hypertensive subjects, regulating 21 pathways. Moreover, changes in the levels of 4 exosomes-miRNAs were validated in a confirmation cohort and found associated with albuminuria. In particular miR-26a, major regulator of TGF-ß signaling, was found downregulated in both type of exosomes when compared with healthy controls and to hypertension normoalbuminurics (P<0.01). Similarly, decreased miR-26a levels were found in podocyte-derived exosomes after TGF-ß stress. Our results revealed an exosomes miRNA signature associated to albuminuria in hypertension. In particular, exosomes miR-26a seemed to play a key role in the regulation of TGF-ß, a relevant effector in podocyte damage. These findings support the use of exosomes miRNAs as biomarkers of cardiovascular risk progression and therapeutic tools in early kidney damage.


Subject(s)
Albuminuria/genetics , Exosomes/genetics , Gene Expression Profiling/methods , Hypertension/genetics , MicroRNAs/genetics , Aged , Albuminuria/blood , Albuminuria/urine , Cells, Cultured , Down-Regulation/drug effects , Female , Gene Regulatory Networks , Humans , Hypertension/blood , Hypertension/urine , Male , Middle Aged , Podocytes/drug effects , Podocytes/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Transforming Growth Factor beta1/pharmacology
10.
J Nephrol ; 34(4): 1157-1167, 2021 Aug.
Article in English | MEDLINE | ID: mdl-32803682

ABSTRACT

BACKGROUND: Urinary exosomes, especially microRNAs (miRNAs) packaged within, are ideal sources of renal damage markers. We investigated the association between exosomal miR-146a, (anti-inflammatory regulator) and disease activity, proteinuria and systemic lupus erythematosus (SLE) flares over a 36-month follow-up period. METHODS: We isolated urinary exosomes from 41 SLE patients, 27 with lupus nephritis (LN) and 20 healthy controls, and exosomal miR-146a, quantified by the real-time quantitative polymerase chain reaction (RT-qPCR), was correlated with histological features in 13 renal biopsies. We also analysed the association between the exosomal miR-146a and TRAF6 axis. RESULTS: Exosomal miR-146a showed an inverse association with circulating C3 and C4 complement components, proteinuria, and with histological features such as chronicity index. This marker was able to identify LN with an AUC of 0.82 (p = 0.001). Basal exosomal miR-146a was associated with disease activity and proteinuria changes and was an independent marker of 36-month follow-up flares (OR 7.08, p = 0.02). Pathway analysis identified IRAK1 and TRAF6 as miR-146a target genes. Finally, in vitro experiments suggested that miR-146a exerts a protective effect through negative regulation of inflammation by suppressing IRAK1 and TRAF6. CONCLUSIONS: Urinary exosomal miR-146a levels are correlated with lupus activity, proteinuria and histological features, discriminating patients with LN and being a good baseline marker of SLE flares. We have identified a relevant biological miR-146a-TRAF6 axis association in LN renal fibrosis progression.


Subject(s)
Albuminuria/diagnosis , Exosomes , Lupus Nephritis , MicroRNAs/urine , Biomarkers , Humans , Interleukin-1 Receptor-Associated Kinases , Intracellular Signaling Peptides and Proteins , Lupus Erythematosus, Systemic , Lupus Nephritis/genetics , Symptom Flare Up
11.
Am J Physiol Renal Physiol ; 319(2): F178-F191, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32567349

ABSTRACT

Kidney injury in hypertension and diabetes entails, among in other structures, damage in a key cell of the glomerular filtration barrier, the podocyte. Podocytes are polarized and highly differentiated cells in which vesicular transport, partly driven by Rab GTPases, is a relevant process. The aim of the present study was to analyze Rab GTPases of the Rab-Rabphilin system in human immortalized podocytes and the impact of high glucose and angiotensin II. Furthermore, alterations of the system in urine cell pellets from patients with hypertension and diabetes were studied. Apoptosis was analyzed in podocytes, and mRNA level quantification, Western blot analysis, and immunofluorescence were developed to quantify podocyte-specific molecules and Rab-Rabphilin components (Rab3A, Rab27A, and Rabphilin3A). Quantitative RT-PCR was performed on urinary cell pellet from patients. The results showed that differentiated cells had reduced protein levels of the Rab-rabphillin system compared with undifferentiated cells. After glucose overload and angiotensin II treatment, apoptosis was increased and podocyte-specific proteins were reduced. Rab3A and Rab27A protein levels were increased under glucose overload, and Rabphilin3A decreased. Furthermore, this system exhibited higher levels under stress conditions in a manner of angiotensin II dose and time treatment. Immunofluorescence imaging indicated different expression patterns of podocyte markers and Rab27A under treatments. Finally, Rab3A and Rab27A were increased in patient urine pellets and showed a direct relationship with albuminuria. Collectively, these results suggest that the Rab-Rabphilin system could be involved in the alterations observed in injured podocytes and that a mechanism may be activated to reduce damage through the vesicular transport enhancement directed by this system.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Angiotensin II/pharmacology , Glucose/adverse effects , Podocytes/metabolism , rab GTP-Binding Proteins/metabolism , Albuminuria/metabolism , Apoptosis/drug effects , Humans , Nerve Tissue Proteins/metabolism , Vesicular Transport Proteins/metabolism
12.
J Transl Med ; 18(1): 132, 2020 03 18.
Article in English | MEDLINE | ID: mdl-32188466

ABSTRACT

BACKGROUND: Sequencing of miRNAs isolated from exosomes has great potential to identify novel disease biomarkers, but exosomes have low amount of RNA, hindering adequate analysis and quantification. Here, we have assessed several steps in developing an optimized small RNA (sRNA) library preparation protocol for next-generation sequencing (NGS) miRNA analysis from urinary exosomes. METHODS: A total of 24 urinary exosome samples from donors were included in this study. RNA was extracted by column-based methods. The quality of extracted RNA was assessed by spectrophotometric quantification and Bioanalyzer software analysis. All libraries were prepared using the CleanTag small RNA library preparation protocol and the effect of our additional modifications on adapter-dimer presence, sequencing data and tagged small RNA library population was also analyzed. RESULTS: Our results show that good quality sequencing libraries can be prepared following our optimized small RNA library preparation protocol from urinary exosomes. When the size selection by gel purification step was included within the workflow, adapter-dimer was totally removed from cDNA libraries. Furthermore, the inclusion of this modification step within small RNA library protocol augmented the small RNA mapped reads, with an especially significant 37% increase in miRNA reads, and the gel purification step made no difference to the tagged miRNA population. CONCLUSIONS: This study provides researchers with an optimized small RNA library preparation workflow for next generation sequencing based exosome-associated miRNA analysis that yields a high amount of miRNA mapped reads without skewing the tagged miRNA population significantly.


Subject(s)
Exosomes , MicroRNAs , Gene Library , High-Throughput Nucleotide Sequencing , Humans , MicroRNAs/genetics , Sequence Analysis, RNA
13.
J Transl Med ; 16(1): 228, 2018 08 14.
Article in English | MEDLINE | ID: mdl-30107841

ABSTRACT

BACKGROUND: There is increasing interest in using extracellular vesicle-derived microRNAs (miRNAs) as biomarkers in renal dysfunction and injury. Preliminary evidence indicates that miRNAs regulate the progression of glomerular disease. Indeed, exosomes from the renal system have provided novel evidence in the clinical setting of albuminuria. Thus, the aim of this study was to quantify the urinary miRNAs present in exosome and microvesicles (MVs), and to assess their association with the presence of increased urinary albumin excretion in essential hypertension. METHODS: Exosomes were collected from urine specimens from a cohort of hypertensive patients with (n = 24) or without albuminuria (n = 28), and from 20 healthy volunteers as a control group. Urinary exosomes were phenotyped by Western blot, tunable resistive pulse sensing, and electronic microscopy. Expression of miR-146a and miR-335* was analysed by qRT-PCR and any associations between albuminuria and exosomal miRNAs were analysed. RESULTS: Urinary miRNAs are highly enriched in exosome subpopulations compared to MVs, both in patients with or without increased albuminuria (p < 0.001), but not in the control group. High albuminuria was associated with 2.5-fold less miR-146a in exosomes (p = 0.017), whereas miR-146a levels in MV did not change. In addition, exosome miR-146a levels were inversely associated with albuminuria (r = 0.65, p < 0.0001), and discriminated the presence of urinary albumin excretion presence [area under the curve = 0.80, 95% confidence interval: 0.66-0.95; p = 0.0013]. CONCLUSIONS: Our results indicate that miRNAs were enriched in the urinary exosome subpopulation in hypertensive patients and that low miR-146a expression in exosomes was associated with the presence of albuminuria. Thus, urinary exosome miR-146a may be a potentially useful tool for studying early renal injury in hypertension.


Subject(s)
Albuminuria/genetics , Albuminuria/urine , Essential Hypertension/genetics , Essential Hypertension/urine , Exosomes/metabolism , MicroRNAs/urine , Albuminuria/complications , Biomarkers/urine , Essential Hypertension/complications , Exosomes/ultrastructure , Female , Humans , Male , MicroRNAs/genetics , MicroRNAs/metabolism , Middle Aged , ROC Curve
14.
J Hypertens ; 36(8): 1712-1718, 2018 08.
Article in English | MEDLINE | ID: mdl-29677049

ABSTRACT

OBJECTIVE: Hypertension-induced podocyte damage and the relationship with UAE is analyzed in diabetic and nondiabetic participants. PATIENTS AND METHODS: Sixty-four hypertensive patients, 30 diabetics, with glomerular filtration rate (eGFR) greater than 60 ml/min per 1.73 m were included. Urinary albumin excretion was measured in morning urine using a nephelometric immunoassay and expressed as albumin/creatinine ratio. Urinary pellets were obtained from fresh urine and mRNA was assessed by real-time quantitative PCR. Likewise, protein podocyte-specific molecules were measured by western blot using specific antibodies. RESULTS: Fourteen nondiabetics and 20 diabetics had increased UAE greater than 30 mg/g. In individuals with increased EUA, the mRNA expression of nephrin and CD2AP was low in diabetics, whereas only nephrin mRNA in nondiabetics. No differences were observed in podocalyxin and aquaporin-1 mRNA levels. Concerning the protein values, in both nondiabetic and diabetic patients, nephrin, CD2AP and podocalyxin were increased in patients with increased UAE, with no differences in aquaporin-1. A significant positive relationship was observed between log UAE and nephrin protein values, and an inverse association observed with mRNA. CONCLUSION: Hypertensive patients who had elevated UAE showed increased urinary excretion of podocyte-specific proteins coupled with a phenotype of decreased mRNA expression. The phenotype of podocyte-specific mRNA and the increment of nephrin can be used as a valuable marker of early glomerular injury.


Subject(s)
Albuminuria/urine , Diabetes Mellitus/urine , Hypertension/urine , Kidney Diseases/urine , Podocytes/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/urine , Adult , Aged , Aquaporin 1/genetics , Aquaporin 1/urine , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/urine , Female , Humans , Hypertension/complications , Hypertension/metabolism , Kidney Diseases/etiology , Male , Membrane Proteins/genetics , Membrane Proteins/urine , Middle Aged , Podocytes/pathology , RNA, Messenger/urine , Sialoglycoproteins/genetics , Sialoglycoproteins/urine
15.
Clin Sci (Lond) ; 132(5): 569-579, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29440621

ABSTRACT

Identifying new markers of disease flares in lupus nephritis (LN) that facilitate patient stratification and prognosis is important. Therefore, the aim of the present study was to analyze whether urinary SIRT1 expression was altered in LN and whether SIRT1 values in urine could be valuable biomarker of disease activity. In a cohort study, urinary pellets from 40 patients diagnosed with systemic lupus erythematosus (SLE) were analyzed. Clinical measures of lupus activity were assessed. The expression of SIRT1 was quantified by quantitative PCR (qRT-PCR) and immunoblot, then compared between patients with active lupus nephritis, in remission and healthy controls. Association with lupus activity and renal histological features was also analyzed. A significant increase in SIRT1 mRNA levels in patients with active LN was observed compared with those in remission (P=0.02) or healthy controls (P=0.009). In addition, SIRT-1 protein levels were also augmented in LN group than remission (P=0.029) and controls (P=0.001). A strong association was found between SIRT1 expression with anti-dsDNA in SLE and in patients with LN. In addition, histological features in LN biopsies were related with SIRT1, increasing its expression in proliferative forms. Finally, SIRT1 expression values showed a strong discriminatory power of renal injury in SLE. Our study demonstrated an altered urinary expression of SIRT1 and a strong association with disease activity in LN patients, being a valuable marker of renal injury. These results showed the role of the SIRT1 pathway in the SLE pathogenesis.


Subject(s)
Gene Expression , Lupus Erythematosus, Systemic/genetics , Lupus Nephritis/genetics , Sirtuin 1/genetics , Adult , Aged , Biomarkers/urine , Cohort Studies , Female , Humans , Kidney/metabolism , Kidney/pathology , Lupus Erythematosus, Systemic/metabolism , Lupus Erythematosus, Systemic/urine , Lupus Nephritis/metabolism , Lupus Nephritis/urine , Male , Middle Aged , Prognosis , Severity of Illness Index , Sirtuin 1/metabolism , Sirtuin 1/urine
16.
17.
Int J Mol Sci ; 18(4)2017 Mar 28.
Article in English | MEDLINE | ID: mdl-28350323

ABSTRACT

Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease that affects multiple organs. Currently, therapeutic molecules present adverse side effects and are only effective in some SLE patient subgroups. Extracellular vesicles (EV), including exosomes, microvesicles and apoptotic bodies, are released by most cell types, carry nucleic acids, proteins and lipids and play a crucial role in cell-to-cell communication. EVs can stimulate or suppress the immune responses depending on the context. In SLE, EVs can work as autoadjuvants, enhance immune complex formation and maintaining inflammation state. Over the last years, EVs derived from mesenchymal stem cells and antigen presenting cells have emerged as cell-free therapeutic agents to treat autoimmune and inflammatory diseases. In this review, we summarize the current therapeutic applications of extracellular vesicles to regulate immune responses and to ameliorate disease activity in SLE and other autoimmune disorders.


Subject(s)
Extracellular Vesicles/transplantation , Lupus Erythematosus, Systemic/therapy , Antigen-Presenting Cells/cytology , Autoimmunity , Cell Communication , Humans , Lupus Erythematosus, Systemic/immunology , Mesenchymal Stem Cells/cytology
18.
Nephrol Dial Transplant ; 31(5): 780-9, 2016 05.
Article in English | MEDLINE | ID: mdl-26932688

ABSTRACT

BACKGROUND: Currently, renal biopsy remains the gold standard for the diagnosis and prognosis of lupus nephritis (LN). However, it is an invasive method, and new non-invasive laboratory tests are needed to identify renal involvement without renal biopsy. Podocyte damage plays an important role in the pathogenesis and progression of systemic lupus erythematosus (SLE). We characterize whether the phenotype of urinary podocytes (viability, apoptosis, mRNA and protein levels of the podocyte-associated molecules) is a novel marker of clinical and histological features in SLE patients with or without LN. METHODS: We quantified in urinary sediments of 32 SLE patients and 20 controls, mRNA and protein levels of podocalyxin, synapotopodin, podocin, nephrin and WT-1 by quantitative real-time polymerase chain reaction and western blot analysis and correlated these with clinical and histological parameters. The viability of detached urine podocytes was analysed by flow cytometry with podocalyxin and annexin V/7-AAD double staining and immunofluorescence of urine podocyte cultures. RESULTS: The degree of a poptotic podocytes from urine samples was significantly decreased in patients with LN, especially in the active state (33% compared with 75% in controls, P < 0.001), and the majority of the detached podocytes in the urine of patients with active LN were viable (70% grew in culture). Furthermore, urinary mRNA of podocyte-associated molecules was significantly lower in patients with active LN (P < 0.05) compared with healthy controls, and protein levels of podocyte markers were significantly increased in SLE patients, especially with LN compared with SLE without LN (P < 0.05) and the healthy control group (P < 0.01). Finally, urinary protein levels of podocyte-related markers were associated with proteinuria and histological features (P < 0.05 and P < 0.01), and receiver operating characteristics curves of protein levels discriminate between LN and healthy controls with an area under the curve (AUC) between 0.91 and 0.77 (P < 0.001). CONCLUSIONS: Urinary dedifferentiated podocytes were shown in active LN, and their protein levels correlated with proteinuria and histological features in LN. These preliminary results suggest that it could be a potentially useful non-invasive marker for evaluating the progression of glomerular disease in SLE.


Subject(s)
Biomarkers/analysis , Cell Differentiation , Kidney/metabolism , Lupus Nephritis/diagnosis , Podocytes/pathology , Urinalysis/methods , Adult , Area Under Curve , Case-Control Studies , Female , Humans , Kidney/pathology , Lupus Nephritis/genetics , Male , Middle Aged , Podocytes/metabolism , Prognosis , RNA, Messenger/genetics
19.
Dis Markers ; 2015: 613536, 2015.
Article in English | MEDLINE | ID: mdl-26435565

ABSTRACT

Systemic lupus erythematosus is an autoimmune disease that predominantly affects women and typically manifests in multiple organs. The damage caused by this disorder is characterized by a chronic inflammatory state. Extracellular vesicles (EVs), including microvesicles (also known as microparticles), apoptotic bodies, and exosomes, are recognized vehicles of intercellular communication, carrying autoantigens, cytokines, and surface receptors. Therefore, the evidence of EVs and their cargo as biomarkers of autoimmune disease is rapidly expanding. This review will focus on biogenesis of extracellular vesicles, their pathophysiological roles, and their potential as biomarkers and therapeutics in inflammatory disease, especially in systemic lupus erythematosus.


Subject(s)
Extracellular Vesicles/metabolism , Lupus Erythematosus, Systemic/metabolism , Biomarkers/metabolism , Biomarkers/urine , Humans , Lupus Erythematosus, Systemic/pathology , Lupus Erythematosus, Systemic/urine
20.
PLoS One ; 10(9): e0138618, 2015.
Article in English | MEDLINE | ID: mdl-26390437

ABSTRACT

There is increased interest in using microRNAs (miRNAs) as biomarkers in different diseases. Present in body fluids, it is controversial whether or not they are mainly enclosed in exosomes, thus we studied if urinary miRNAs are concentrated inside exosomes and if the presence of systemic lupus erythematosus with or without lupus nephritis modifies their distribution pattern. We quantified specific miRNAs in urine of patients with systemic lupus erythematosus (n = 38) and healthy controls (n = 12) by quantitative reverse-transcription PCR in cell-free urine, exosome-depleted supernatant and exosome pellet obtained by ultracentrifugation. In control group, miR-335* and miR-302d were consistently higher in exosomes than in exosome-depleted supernatant, and miR-200c and miR-146a were higher in cell-free fraction. In lupus patients, all urinary miRNAs tested were mainly in exosomes with lower levels outside them (p<0.05 and p<0.01, respectively). This pattern is especially relevant in patients with active lupus nephritis compared to the control group or to the SLE patients in absence of lupus nephritis, with miR-146a being the most augmented (100-fold change, p<0.001). Among the exosomal miRNAs tested, only the miR-146a discriminates the presence of active lupus nephritis. In conclusion, urinary miRNAs are contained primarily in exosomes in systemic lupus erythematosus, and the main increment was found in the presence of active lupus nephritis. These findings underscore the attractiveness of exosomal miRNAs in urine, a non-invasive method, as potential renal disease markers.


Subject(s)
Exosomes/metabolism , Lupus Erythematosus, Systemic/urine , MicroRNAs/urine , Adult , Biomarkers/urine , Case-Control Studies , Female , Humans , Lupus Nephritis/metabolism , Lupus Nephritis/urine , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...