Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag ; 183: 53-62, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38718627

ABSTRACT

Advanced thermochemical technologies for plastic waste valorization represent an interesting alternative to waste-to-energy options. They are particularly appealing for waste-to-hydrogen and waste-to-chemicals applications, with autothermal steam-oxygen gasification in fluidized bed reactors showing the greatest market potential. The study describes a series of experimental tests carried out on a large pilot-scale fluidized bed gasifier, using steam and O2-enriched air, with increasing fractions of oxygen. Different values of the main operating parameters are varied: equivalence ratio (0.22-0.25), steam-to-carbon ratio (0.7-1.13), and steam-to-oxygen ratio (up to 3.2). The fuel consists of real mixed plastic waste coming from separate collection of municipal solid wastes. The data obtained are used to investigate in depth the role of the main operating parameters and to improve and validate a recently developed one-dimensional kinetic model for waste gasification. The validation shows a good agreement between experimental data and model results, suggesting the reliability of the model to predict the reactor behavior under conditions of pure steam-oxygen gasification, relevant to many industrial applications. It has been found that the equivalence ratio is the parameter that most affects the syngas composition. At a constant equivalent ratio, the molar fraction of oxygen in the enriched air shows a limited influence on syngas composition while the steam is crucial in controlling the temperature along the reactor. Provided that the steam-to-carbon molar ratio is larger than 1.5, steam affects mainly the reactor temperature rather than the syngas composition, qualifying the steam-to-oxygen molar ratio as an instrumental parameter for smooth plant operation.


Subject(s)
Oxygen , Plastics , Refuse Disposal , Steam , Oxygen/analysis , Refuse Disposal/methods , Pilot Projects , Solid Waste/analysis , Models, Theoretical , Gases/analysis
2.
Membranes (Basel) ; 10(4)2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32230906

ABSTRACT

In this study, we prepared and characterized composite films formed by amorphous poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and particles of the size-selective Zeolitic Imidazolate Framework 8 (ZIF-8). The aim was to increase the permselectivity properties of pure PPO using readily available materials to enable the possibility to scale-up the technology developed in this work. The preparation protocol established allowed robust membranes with filler loadings as high as 45 wt% to be obtained. The thermal, morphological, and structural properties of the membranes were analyzed via DSC, SEM, TGA, and densitometry. The gas permeability and diffusivity of He, CO2, CH4, and N2 were measured at 35, 50, and 65 °C. The inclusion of ZIF-8 led to a remarkable increase of the gas permeability for all gases, and to a significant decrease of the activation energy of diffusion and permeation. The permeability increased up to +800% at 45 wt% of filler, reaching values of 621 Barrer for He and 449 for CO2 at 35 °C. The ideal size selectivity of the PPO membrane also increased, albeit to a lower extent, and the maximum was reached at a filler loading of 35 wt% (1.5 for He/CO2, 18 for CO2/N2, 17 for CO2/CH4, 27 for He/N2, and 24 for He/CH4). The density of the composite materials followed an additive behavior based on the pure values of PPO and ZIF-8, which indicates good adhesion between the two phases. The permeability and He/CO2 selectivity increased with temperature, which indicates that applications at higher temperatures than those inspected should be encouraged.

3.
Bioresour Technol ; 171: 433-41, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25226060

ABSTRACT

With the aim to support the experimental tests in a gasification pilot plant, the thermal decomposition of coal, biomass and their mixtures has been carried out through a thermogravimetric analysis (TGA) and a simplified kinetic analysis. The TGA of pure fuels indicates the low reactivity of South African coal and the relatively high reactivity of Sardinian Sulcis coal during pyrolysis. Among the tested fuels, biomass (stone pine wood chips) is the most reactive one. These results fully confirm those obtained during the experimental tests in the gasification pilot plant. As for the fuel blends, the analysis shows that the synergic effects between the considered coals and biomass are negligible when they are co-pyrolyzed. The results of the analysis confirm that TGA could be very useful to generally predict the gasification performance and to optimize the experimental campaigns in pilot-scale gasification plants.


Subject(s)
Biofuels , Biomass , Coal , Hot Temperature , Thermogravimetry/methods , Wood , Italy , Kinetics , Pilot Projects , South Africa
SELECTION OF CITATIONS
SEARCH DETAIL
...