Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Neuro Oncol ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073785

ABSTRACT

Pineal parenchymal tumors are rare neoplasms for which evidence-based treatment recommendations are lacking. These tumors vary in biology, clinical characteristics, and prognosis, requiring treatment that ranges from surgical resection alone to intensive multimodal antineoplastic therapy. Recently, international collaborative studies have shed light on the genomic landscape of these tumors, leading to refinement in molecular-based disease classification in the 5th edition of the World Health Organization (WHO) classification of tumors of the central nervous system. In this review, we summarize the literature on diagnostic and therapeutic approaches, and suggest pragmatic recommendations for the clinical management of patients presenting with intrinsic pineal region masses including parenchymal tumors (pineocytoma, pineal parenchymal tumor of intermediate differentiation, and pineoblastoma), pineal cyst, and papillary tumors of the pineal region.

2.
J Neurooncol ; 166(2): 359-368, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38253790

ABSTRACT

PURPOSE: To provide a treatment-focused review and develop basic treatment guidelines for patients diagnosed with pineal anlage tumor (PAT). METHODS: Prospectively collected data of three patients with pineal anlage tumor from Germany was combined with clinical details and treatment information from 17 published cases. RESULTS: Overall, 20 cases of PAT were identified (3 not previously reported German cases, 17 cases from published reports). Age at diagnosis ranged from 0.3 to 35.0 (median: 3.2 ± 7.8) years. All but three cases were diagnosed before the age of three years. For three cases, metastatic disease at initial staging was described. All patients underwent tumor surgery (gross-total resection: 9, subtotal resection/biopsy: 9, extent of resection unknown: 2). 15/20 patients were alive at last follow-up. Median follow-up for 10/15 surviving patients with available follow-up and treatment data was 2.4 years (0.3-6.5). Relapse was reported for 3 patients within 0.8 years after diagnosis. Five patients died, 3 after relapse and 2 from early postoperative complications. Two-year-progression-free- and -overall survival were 65.2 ± 12.7% and 49.2 ± 18.2%, respectively. All 4 patients who received intensive chemotherapy including high-dose chemotherapy combined with radiotherapy (2 focal, 2 craniospinal [CSI]) had no recurrence. Focal radiotherapy- and CSI-free survival rates in 13 evaluable patients were 46.2% (6/13) and 61.5% (8/13), respectively. CONCLUSION: PAT is an aggressive disease mostly affecting young children. Therefore, adjuvant therapy using intensive chemotherapy and considering radiotherapy appears to comprise an appropriate treatment strategy. Reporting further cases is crucial to evaluate distinct treatment strategies.


Subject(s)
Brain Neoplasms , Pineal Gland , Pinealoma , Supratentorial Neoplasms , Adolescent , Adult , Child , Child, Preschool , Humans , Infant , Young Adult , Brain Neoplasms/diagnosis , Brain Neoplasms/surgery , Neoplasm Recurrence, Local/pathology , Pineal Gland/surgery , Pineal Gland/pathology , Pinealoma/diagnosis , Pinealoma/surgery , Recurrence , Supratentorial Neoplasms/pathology , Treatment Outcome
4.
EBioMedicine ; 96: 104797, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37716236

ABSTRACT

BACKGROUND: Genomic characterisation has led to an improved understanding of adult melanoma. However, the aetiology of melanoma in children is still unclear and identifying the correct diagnosis and therapeutic strategies remains challenging. METHODS: Exome sequencing of matched tumour-normal pairs from 26 paediatric patients was performed to study the mutational spectrum of melanomas. The cohort was grouped into different categories: spitzoid melanoma (SM), conventional melanoma (CM), and other melanomas (OT). FINDINGS: In all patients with CM (n = 10) germline variants associated with melanoma were found in low to moderate melanoma risk genes: in 8 patients MC1R variants, in 2 patients variants in MITF, PTEN and BRCA2. Somatic BRAF mutations were detected in 60% of CMs, homozygous deletions of CDKN2A in 20%, TERTp mutations in 30%. In the SM group (n = 12), 5 patients carried at least one MC1R variant; somatic BRAF mutations were detected in 8.3%, fusions in 25% of the cases. No SM showed a homozygous CDKN2A deletion nor a TERTp mutation. In 81.8% of the CM/SM cases the UV damage signatures SBS7 and/or DBS1 were detected. The patient with melanoma arising in giant congenital nevus (CNM) demonstrated the characteristic NRAS Q61K mutation. INTERPRETATION: UV-radiation and MC1R germline variants are risk factors in the development of conventional and spitzoid paediatric melanomas. Paediatric CMs share genomic similarities with adult CMs while the SMs differ genetically from the CM group. Consistent genetic characterization of all paediatric melanomas will potentially lead to better subtype differentiation, treatment, and prevention in the future. FUNDING: Found in Acknowledgement.

5.
JCO Precis Oncol ; 7: e2300015, 2023 06.
Article in English | MEDLINE | ID: mdl-37364231

ABSTRACT

PURPOSE: INFORM is an international pediatric precision oncology registry, prospectively collecting molecular and clinical data of children with recurrent, progressive, or very high-risk malignancies. We have previously identified a subgroup of patients with improved outcomes on the basis of molecular profiling. The present analysis systematically investigates progression-free survival (PFS) and overall survival (OS) of patients receiving matching targeted treatment (MTT) with the most frequently applied drug classes and its correlation with underlying molecular alterations. METHODS: A cohort of 519 patients with relapsed or refractory high-risk malignancies who had completed a follow-up of at least 2 years or shorter in the case of death or loss to follow-up was analyzed. Survival times were compared using the log-rank test. RESULTS: MTT with anaplastic lymphoma kinase (ALK), neurotrophic tyrosine receptor kinase (NTRK), and B-RAF kinase (BRAF) inhibitors showed significantly improved PFS (P = .012) and OS (P = .036) in comparison with conventional treatment or no treatment. However, analysis of the four most commonly applied MTT groups, mitogen-activated protein kinase (MEK- n = 19), cyclin-dependent kinase (CDK- n = 23), other kinase (n = 62), and mammalian-target of rapamycin (mTOR- n = 20) inhibitors, did not reveal differences in PFS or OS compared with conventional treatment or no treatment in patients with similar molecular pathway alterations. We did not observe differences in the type of pathway alterations (eg, copy number alterations, single-nucleotide variants, InDels, gene fusions) addressed by MTT. CONCLUSION: Patients with respective molecular alterations benefit from treatment with ALK, NTRK, and BRAF inhibitors as previously described. No survival benefit was observed with MTT for mutations in the MEK, CDK, other kinase, or mTOR signaling pathways. The noninterventional character of a registry has to be taken into account when interpreting these data and underlines the need for innovative interventional biomarker-driven clinical trials in pediatric oncology.


Subject(s)
Antineoplastic Agents , Carcinoma , Animals , Humans , Child , Adolescent , Antineoplastic Agents/adverse effects , Proto-Oncogene Proteins B-raf/genetics , Precision Medicine , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/genetics , Receptor Protein-Tyrosine Kinases , TOR Serine-Threonine Kinases , Mitogen-Activated Protein Kinase Kinases , Mammals
6.
Nat Commun ; 14(1): 1677, 2023 03 25.
Article in English | MEDLINE | ID: mdl-36966138

ABSTRACT

DICER1 syndrome is a tumor predisposition syndrome that is associated with up to 30 different neoplastic lesions, usually affecting children and adolescents. Here we identify a group of mesenchymal tumors which is highly associated with DICER1 syndrome, and molecularly distinct from other DICER1-associated tumors. This group of DICER1-associated mesenchymal tumors encompasses multiple well-established clinicopathological tumor entities and can be further divided into three clinically meaningful classes designated "low-grade mesenchymal tumor with DICER1 alteration" (LGMT DICER1), "sarcoma with DICER1 alteration" (SARC DICER1), and primary intracranial sarcoma with DICER1 alteration (PIS DICER1). Our study not only provides a combined approach to classify DICER1-associated neoplasms for improved clinical management but also suggests a role for global hypomethylation and other recurrent molecular events in sarcomatous differentiation in mesenchymal tumors with DICER1 alteration. Our results will facilitate future investigations into prognostication and therapeutic approaches for affected patients.


Subject(s)
Neoplastic Syndromes, Hereditary , Sarcoma , Child , Adolescent , Humans , Germ-Line Mutation , Sarcoma/genetics , Neoplastic Syndromes, Hereditary/genetics , Genomics , Ribonuclease III/genetics , Genetic Predisposition to Disease , Rare Diseases , Mutation , DEAD-box RNA Helicases/genetics
7.
Semin Cancer Biol ; 84: 214-227, 2022 09.
Article in English | MEDLINE | ID: mdl-34116162

ABSTRACT

Despite huge advances in the diagnosis and treatment of pediatric cancers over the past several decades, it remains one of the leading causes of death during childhood in developed countries. The development of new targeted treatments for these diseases has been hampered by two major factors. First, the extremely heterogeneous nature of the types of tumors encountered in this age group, and their fundamental differences from common adult carcinomas, has made it hard to truly get a handle on the complexities of the underlying biology driving tumor growth. Second, a reluctance of the pharmaceutical industry to develop products or trials for this population due to the relatively small size of the 'market', and a too-easy mechanism of obtaining waivers for pediatric development of adult oncology drugs based on disease type rather than mechanism of action, led to significant difficulties in getting access to new drugs. Thankfully, the field has now started to change, both scientifically and from a regulatory perspective, in order to address some of these challenges. In this review, we will examine some of the recent insights into molecular features which make pediatric tumors so unique and how these might represent therapeutic targets; highlight ongoing international initiatives for providing comprehensive, personalized genomic profiling of childhood tumors in a clinically-relevant timeframe, and look briefly at where the field of pediatric precision oncology may be heading in future.


Subject(s)
Neoplasms , Precision Medicine , Child , Genomics , Humans , Medical Oncology , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/therapy
8.
Nat Commun ; 12(1): 5530, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34545083

ABSTRACT

Long-term complications such as radiation-induced second malignancies occur in a subset of patients following radiation-therapy, particularly relevant in pediatric patients due to the long follow-up period in case of survival. Radiation-induced gliomas (RIGs) have been reported in patients after treatment with cranial irradiation for various primary malignancies such as acute lymphoblastic leukemia (ALL) and medulloblastoma (MB). We perform comprehensive (epi-) genetic and expression profiling of RIGs arising after cranial irradiation for MB (n = 23) and ALL (n = 9). Our study reveals a unifying molecular signature for the majority of RIGs, with recurrent PDGFRA amplification and loss of CDKN2A/B and an absence of somatic hotspot mutations in genes encoding histone 3 variants or IDH1/2, uncovering diagnostic markers and potentially actionable targets.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p15/metabolism , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Gene Amplification , Glioma/genetics , Neoplasm Recurrence, Local/pathology , Receptor, Platelet-Derived Growth Factor alpha/genetics , Adolescent , Adult , Child , Chromosome Deletion , Cluster Analysis , DNA Methylation/genetics , Female , Gene Expression Regulation, Neoplastic , Gene Rearrangement/genetics , Genome, Human , Glioma/pathology , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Radiation , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Transcription, Genetic , Young Adult
9.
Cancer Discov ; 11(11): 2764-2779, 2021 11.
Article in English | MEDLINE | ID: mdl-34373263

ABSTRACT

INFORM is a prospective, multinational registry gathering clinical and molecular data of relapsed, progressive, or high-risk pediatric patients with cancer. This report describes long-term follow-up of 519 patients in whom molecular alterations were evaluated according to a predefined seven-scale target prioritization algorithm. Mean turnaround time from sample receipt to report was 25.4 days. The highest target priority level was observed in 42 patients (8.1%). Of these, 20 patients received matched targeted treatment with a median progression-free survival of 204 days [95% confidence interval (CI), 99-not applicable], compared with 117 days (95% CI, 106-143; P = 0.011) in all other patients. The respective molecular targets were shown to be predictive for matched treatment response and not prognostic surrogates for improved outcome. Hereditary cancer predisposition syndromes were identified in 7.5% of patients, half of which were newly identified through the study. Integrated molecular analyses resulted in a change or refinement of diagnoses in 8.2% of cases. SIGNIFICANCE: The pediatric precision oncology INFORM registry prospectively tested a target prioritization algorithm in a real-world, multinational setting and identified subgroups of patients benefiting from matched targeted treatment with improved progression-free survival, refinement of diagnosis, and identification of hereditary cancer predisposition syndromes.See related commentary by Eggermont et al., p. 2677.This article is highlighted in the In This Issue feature, p. 2659.


Subject(s)
Neoplasms , Child , Humans , Neoplasms/diagnosis , Neoplasms/drug therapy , Neoplasms/genetics , Precision Medicine , Progression-Free Survival , Prospective Studies , Registries
10.
Acta Neuropathol ; 141(5): 771-785, 2021 05.
Article in English | MEDLINE | ID: mdl-33619588

ABSTRACT

Recent genomic studies have shed light on the biology and inter-tumoral heterogeneity underlying pineal parenchymal tumors, in particular pineoblastomas (PBs) and pineal parenchymal tumors of intermediate differentiation (PPTIDs). Previous reports, however, had modest sample sizes and lacked the power to integrate molecular and clinical findings. The different proposed molecular group structures also highlighted a need to reach consensus on a robust and relevant classification system. We performed a meta-analysis on 221 patients with molecularly characterized PBs and PPTIDs. DNA methylation profiles were analyzed through complementary bioinformatic approaches and molecular subgrouping was harmonized. Demographic, clinical, and genomic features of patients and samples from these pineal tumor groups were annotated. Four clinically and biologically relevant consensus PB groups were defined: PB-miRNA1 (n = 96), PB-miRNA2 (n = 23), PB-MYC/FOXR2 (n = 34), and PB-RB1 (n = 25). A final molecularly distinct group, designated PPTID (n = 43), comprised histological PPTID and PBs. Genomic and transcriptomic profiling allowed the characterization of oncogenic drivers for individual tumor groups, specifically, alterations in the microRNA processing pathway in PB-miRNA1/2, MYC amplification and FOXR2 overexpression in PB-MYC/FOXR2, RB1 alteration in PB-RB1, and KBTBD4 insertion in PPTID. Age at diagnosis, sex predilection, and metastatic status varied significantly among tumor groups. While patients with PB-miRNA2 and PPTID had superior outcome, survival was intermediate for patients with PB-miRNA1, and dismal for those with PB-MYC/FOXR2 or PB-RB1. Reduced-dose CSI was adequate for patients with average-risk, PB-miRNA1/2 disease. We systematically interrogated the clinical and molecular heterogeneity within pineal parenchymal tumors and proposed a consensus nomenclature for disease groups, laying the groundwork for future studies as well as routine use in tumor diagnostic classification and clinical trial stratification.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , Pineal Gland/pathology , Pinealoma/genetics , Pinealoma/pathology , Adolescent , Adult , Child , Child, Preschool , Cohort Studies , DNA Methylation , Female , Genome-Wide Association Study , Humans , Infant , Infant, Newborn , Male , Middle Aged , Transcriptome , Young Adult
11.
Nat Commun ; 12(1): 1269, 2021 02 24.
Article in English | MEDLINE | ID: mdl-33627664

ABSTRACT

Telomere maintenance by telomerase activation or alternative lengthening of telomeres (ALT) is a major determinant of poor outcome in neuroblastoma. Here, we screen for ALT in primary and relapsed neuroblastomas (n = 760) and characterize its features using multi-omics profiling. ALT-positive tumors are molecularly distinct from other neuroblastoma subtypes and enriched in a population-based clinical sequencing study cohort for relapsed cases. They display reduced ATRX/DAXX complex abundance, due to either ATRX mutations (55%) or low protein expression. The heterochromatic histone mark H3K9me3 recognized by ATRX is enriched at the telomeres of ALT-positive tumors. Notably, we find a high frequency of telomeric repeat loci with a neuroblastoma ALT-specific hotspot on chr1q42.2 and loss of the adjacent chromosomal segment forming a neo-telomere. ALT-positive neuroblastomas proliferate slowly, which is reflected by a protracted clinical course of disease. Nevertheless, children with an ALT-positive neuroblastoma have dismal outcome.


Subject(s)
Whole Genome Sequencing/methods , Blotting, Western , Exons/genetics , Flow Cytometry , Humans , Proteome/metabolism , Retrospective Studies , Sequence Analysis, RNA/methods , Telomere/genetics , Telomere/metabolism , Telomere Homeostasis/genetics , X-linked Nuclear Protein/genetics
13.
BMC Cancer ; 20(1): 523, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32503469

ABSTRACT

BACKGROUND: Pediatric patients with relapsed or refractory disease represent a population with a desperate medical need. The aim of the INFORM (INdividualized Therapy FOr Relapsed Malignancies in Childhood) program is to translate next generation molecular diagnostics into a biomarker driven treatment strategy. The program consists of two major foundations: the INFORM registry providing a molecular screening platform and the INFORM2 series of biomarker driven phase I/II trials. The INFORM2 NivEnt trial aims to determine the recommended phase 2 dose (RP2D) of the combination treatment of nivolumab and entinostat (phase I) and to evaluate activity and safety (phase II). METHODS: This is an exploratory non-randomized, open-label, multinational and multicenter seamless phase I/II trial in children and adolescents with relapsed / refractory or progressive high-risk solid tumors and CNS tumors. The phase I is divided in 2 age cohorts: 12-21 years and 6-11 years and follows a 3 + 3 design with two dose levels for entinostat (2 mg/m2 and 4 mg/m2 once per week) and fixed dose nivolumab (3 mg/kg every 2 weeks). Patients entering the trial on RP2D can seamlessly enter phase II which consists of a biomarker defined four group basket trial: high mutational load (group A), high PD-L1 mRNA expression (group B), focal MYC(N) amplification (group C), low mutational load and low PD-L1 mRNA expression and no MYC(N) amplification (group D). A Bayesian adaptive design will be used to early stop cohorts that fail to show evidence of activity. The maximum number of patients is 128. DISCUSSION: This trial intends to exploit the immune enhancing effects of entinostat on nivolumab using an innovative biomarker driven approach in order to maximize the chance of detecting signs of activity. It prevents exposure to unnecessary risks by applying the Bayesian adaptive design for early stopping for futility. The adaptive biomarker driven design provides an innovative approach accelerating drug development and reducing exposure to investigational treatments in these vulnerable children at the same time. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03838042. Registered on 12 February 2019.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Benzamides/administration & dosage , Biomarkers, Tumor/analysis , Neoplasms/drug therapy , Nivolumab/administration & dosage , Pyridines/administration & dosage , Adolescent , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Bayes Theorem , Benzamides/adverse effects , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Child , Dose-Response Relationship, Drug , Drug Monitoring/methods , Drug Resistance, Neoplasm , Female , Humans , Male , Medical Futility , Mutation , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/pathology , Nivolumab/adverse effects , Precision Medicine/methods , Pyridines/adverse effects , Treatment Outcome , Young Adult
14.
Acta Neuropathol ; 139(2): 243-257, 2020 02.
Article in English | MEDLINE | ID: mdl-31768671

ABSTRACT

Tumors of the pineal region comprise several different entities with distinct clinical and histopathological features. Whereas some entities predominantly affect adults, pineoblastoma (PB) constitutes a highly aggressive malignancy of childhood with a poor outcome. PBs mainly arise sporadically, but may also occur in the context of cancer predisposition syndromes including DICER1 and RB1 germline mutation. With this study, we investigate clinico-pathological subgroups of pineal tumors and further characterize their biological features. We performed genome-wide DNA methylation analysis in 195 tumors of the pineal region and 20 normal pineal gland controls. Copy-number profiles were obtained from DNA methylation data; gene panel sequencing was added for 93 tumors and analysis was further complemented by miRNA sequencing for 22 tumor samples. Unsupervised clustering based on DNA methylation profiling separated known subgroups, like pineocytoma, pineal parenchymal tumor of intermediate differentiation, papillary tumor of the pineal region and PB, and further distinct subtypes within these groups, including three subtypes within the core PB subgroup. The novel molecular subgroup Pin-RB includes cases of trilateral retinoblastoma as well as sporadic pineal tumors with RB1 alterations, and displays similarities with retinoblastoma. Distinct clinical associations discriminate the second novel molecular subgroup PB-MYC from other PB cases. Alterations within the miRNA processing pathway (affecting DROSHA, DGCR8 or DICER1) are found in about two thirds of cases in the three core PB subtypes. Methylation profiling revealed biologically distinct groups of pineal tumors with specific clinical and molecular features. Our findings provide a foundation for further clinical as well as molecular and functional characterization of PB and other pineal tumors, including the role of miRNA processing defects in oncogenesis.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , Pineal Gland , Pinealoma/genetics , Pinealoma/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Brain Neoplasms/metabolism , Case-Control Studies , Child , DNA Methylation , Female , Humans , Male , MicroRNAs , Middle Aged , Mutation/genetics , Pinealoma/metabolism , Young Adult
15.
Eur J Cancer ; 114: 27-35, 2019 06.
Article in English | MEDLINE | ID: mdl-31022591

ABSTRACT

PURPOSE: Diffuse intrinsic pontine glioma (DIPG) is a highly aggressive paediatric brain tumour with fatal outcome. The Individualised Therapy For Relapsed Malignancies In Childhood (INFORM) registry study offers comprehensive molecular profiling of high-risk tumours to identify target alterations for potential precision therapy. We analysed molecular characteristics and clinical data after brainstem biopsy of all enrolled newly diagnosed DIPGs. PATIENTS AND METHODS: From -February 2015 to February 2018, 21 subsequent primary DIPG cases were enrolled in the nation-wide multicentre INFORM registry study after brainstem biopsy. Whole-genome, whole-exome sequencing and DNA methylation analysis were performed, and RNA-sequencing was added in case of sufficient material. Clinical data were obtained from standardised questionnaires and the INFORM clinical data bank. RESULTS: Tumour material obtained from brainstem biopsy was sufficient for DNA analysis in all cases and RNA analysis in 16 of 21 cases. In 16 of 21 cases (76%), potential targetable alterations were identified including highly relevant MET and NTRK1 fusions as well as an EZH2 alteration not previously described in DIPG. In 5 of 21 cases, molecular information was used for initiation of targeted treatment. The majority of patients (19/21) presented with neurological deficits at diagnosis. Newly arising or worsening of neurological deficits post-biopsy occurred in nine patients. Symptoms were reversible or improved notably in eight cases. CONCLUSION: In this multicentre study setting, brainstem biopsy of DIPG was feasible and yielded sufficient material for comprehensive molecular profiling. Relevant molecular targets were identified impacting clinical management in a substantial subset. Death or severe bleeding occurred in none of the cases. One of 20 patients experienced unilateral paraesthesia possibly related to biopsy.


Subject(s)
Biopsy/methods , Brain Stem Neoplasms/surgery , Glioma/surgery , Adolescent , Child , Child, Preschool , Female , Humans , Male , Precision Medicine , Prospective Studies
16.
Neuro Oncol ; 21(1): 95-105, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30277538

ABSTRACT

Background: Patients with glioblastoma without O6-methylguanine-DNA methyltransferase (MGMT) promoter hypermethylation are unlikely to benefit from alkylating chemotherapy with temozolomide (TMZ). Trials aiming at replacing TMZ with targeted agents in unselected patient populations have failed to demonstrate any improvement of survival. Advances in molecular understanding and diagnostic precision enable identification of key genetic alterations in a timely manner and in principle allow treatments with targeted compounds based on molecular markers. Methods: The NCT Neuro Master Match (N2M2) trial is an open-label, multicenter, phase I/IIa umbrella trial for patients with newly diagnosed isocitrate dehydrogenase (IDH) wildtype glioblastoma without MGMT promoter hypermethylation to show safety, feasibility, and preliminary efficacy of treatment with targeted compounds in addition to standard radiotherapy based on molecular characterization. N2M2 is formally divided into a Discovery and a Treatment part. Discovery includes broad molecular neuropathological diagnostics to detect predefined biomarkers for targeted treatments. Molecular diagnostics and bioinformatic evaluation are performed within 4 weeks, allowing a timely initiation of postoperative treatment. Stratification for Treatment takes place in 5 subtrials, including alectinib, idasanutlin, palbociclib, vismodegib, and temsirolimus as targeted therapies, according to the best matching molecular alteration. Patients without matching alterations are randomized between subtrials without strong biomarkers using atezolizumab and asinercept (APG101) and the standard of care, TMZ. For the phase I parts, a Bayesian criterion is used for continuous monitoring of toxicity. In the phase II trials, progression-free survival at 6 months is used as endpoint for efficacy. Results: Molecular diagnostics and bioinformatic evaluation are performed within 4 weeks, allowing a timely initiation of postoperative treatment. Stratification for Treatment takes place in 5 subtrials, including alectinib, idasanutlin, palbociclib, vismodegib, and temsirolimus as targeted therapies, according to the best matching molecular alteration. Patients without matching alterations are randomized between subtrials without strong biomarkers using atezolizumab and asinercept (APG101) and the standard of care, TMZ. For the phase I parts, a Bayesian criterion is used for continuous monitoring of toxicity. In the phase II trials, progression-free survival at 6 months is used as endpoint for efficacy. Discussion: Molecularly informed trials may provide the basis for the development of predictive biomarkers and help to understand and select patient subgroups who will benefit.


Subject(s)
Biomarkers, Tumor/genetics , Brain Neoplasms/therapy , DNA Methylation , Glioblastoma/therapy , Radiotherapy/methods , Temozolomide/therapeutic use , Adolescent , Adult , Aged , Aged, 80 and over , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Combined Modality Therapy , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Female , Follow-Up Studies , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Isocitrate Dehydrogenase/genetics , Male , Middle Aged , Molecular Targeted Therapy , Mutation , Prognosis , Tumor Suppressor Proteins/genetics , Young Adult
17.
Nat Commun ; 9(1): 2868, 2018 07 20.
Article in English | MEDLINE | ID: mdl-30030436

ABSTRACT

Pineoblastoma is a rare and highly aggressive brain cancer of childhood, histologically belonging to the spectrum of primitive neuroectodermal tumors. Patients with germline mutations in DICER1, a ribonuclease involved in microRNA processing, have increased risk of pineoblastoma, but genetic drivers of sporadic pineoblastoma remain unknown. Here, we analyzed pediatric and adult pineoblastoma samples (n = 23) using a combination of genome-wide DNA methylation profiling and whole-exome sequencing or whole-genome sequencing. Pediatric and adult pineoblastomas showed distinct methylation profiles, the latter clustering with lower-grade pineal tumors and normal pineal gland. Recurrent variants were found in genes involved in PKA- and NF-κB signaling, as well as in chromatin remodeling genes. We identified recurrent homozygous deletions of DROSHA, acting upstream of DICER1 in microRNA processing, and a novel microduplication involving chromosomal region 1q21 containing PDE4DIP (myomegalin), comprising the ancient DUF1220 protein domain. Expresion of PDE4DIP and DUF1220 proteins was present exclusively in pineoblastoma with PDE4DIP gain.


Subject(s)
Brain Neoplasms/genetics , Gene Deletion , Gene Duplication , Muscle Proteins/genetics , Nuclear Proteins/genetics , Pinealoma/genetics , Ribonuclease III/genetics , Adaptor Proteins, Signal Transducing , Adult , Aged , Child , Cytoskeletal Proteins , DEAD-box RNA Helicases/genetics , DNA Methylation , Exome , Genome, Human , Homozygote , Humans , Middle Aged , Pineal Gland/pathology , Protein Domains , Transcriptome
19.
Nature ; 555(7696): 321-327, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29489754

ABSTRACT

Pan-cancer analyses that examine commonalities and differences among various cancer types have emerged as a powerful way to obtain novel insights into cancer biology. Here we present a comprehensive analysis of genetic alterations in a pan-cancer cohort including 961 tumours from children, adolescents, and young adults, comprising 24 distinct molecular types of cancer. Using a standardized workflow, we identified marked differences in terms of mutation frequency and significantly mutated genes in comparison to previously analysed adult cancers. Genetic alterations in 149 putative cancer driver genes separate the tumours into two classes: small mutation and structural/copy-number variant (correlating with germline variants). Structural variants, hyperdiploidy, and chromothripsis are linked to TP53 mutation status and mutational signatures. Our data suggest that 7-8% of the children in this cohort carry an unambiguous predisposing germline variant and that nearly 50% of paediatric neoplasms harbour a potentially druggable event, which is highly relevant for the design of future clinical trials.


Subject(s)
Genome, Human/genetics , Genomics , Mutation/genetics , Neoplasms/classification , Neoplasms/genetics , Adolescent , Adult , Child , Chromothripsis , Cohort Studies , DNA Copy Number Variations/genetics , Diploidy , Genetic Predisposition to Disease/genetics , Germ-Line Mutation/genetics , Humans , Molecular Targeted Therapy , Mutation Rate , Neoplasms/drug therapy , Tumor Suppressor Protein p53/genetics , Young Adult
20.
Neuro Oncol ; 20(6): 826-837, 2018 05 18.
Article in English | MEDLINE | ID: mdl-29165638

ABSTRACT

Background: O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status is a predictive biomarker in glioblastoma patients. Glioblastoma without hypermethylated MGMT promoter is largely resistant to treatment with temozolomide. These patients are in particular need of new treatment approaches, which are offered by biomarker-driven clinical trials with targeted drugs based on molecular characterization of individual tumors. Methods: In preparation for an upcoming clinical study, a comprehensive molecular profiling approach was undertaken on tissues from 43 glioblastoma patients harboring an unmethylated MGMT promoter at diagnosis. The diagnostic pipeline covered various levels of molecular characteristics, including whole-exome sequencing, low-coverage whole-genome sequencing, RNA sequencing, as well as microarray-based gene expression profiling and DNA methylation arrays. Results: Complex multilayer molecular diagnostics were feasible in this setting with a median turnaround time of 4-5 weeks from surgery to the molecular tumor board. In 35% of cases, potentially relevant therapeutic decisions were derived from the data. Alterations were most frequently found in receptor tyrosine kinases, members of the phosphoinositide 3-kinase/Akt/mechanistic target of rapamycin and mitogen-activated protein kinase pathway as well as cell cycle control and p53 regulation cascades. Individual tumors harbored clonal alterations such as oncogenic fusions of tyrosine kinases which constitute promising targets for targeted therapies. A prioritization algorithm is proposed to allocate patients with multiple targets to the potentially best treatment option. Conclusion: With this feasibility study, a comprehensive molecular profiling approach for patients with newly diagnosed glioblastoma harboring an unmethylated MGMT promoter is presented. Analyses in this pilot cohort serve as a basis for trials based on targetable alterations and on the question of allocation of patients to the best treatment arm.


Subject(s)
Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , DNA Methylation , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Promoter Regions, Genetic , Tumor Suppressor Proteins/genetics , Algorithms , Brain Neoplasms/diagnosis , Feasibility Studies , Female , Follow-Up Studies , Glioblastoma/diagnosis , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Pilot Projects , Polymorphism, Single Nucleotide , Prognosis , Exome Sequencing , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL