Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Food Funct ; 15(11): 5987-5999, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38742436

ABSTRACT

The considerable value of whey is evident from its significant potential applications and contributions to the functional food and nutraceutical market. The by-products were individually obtained during functional chhurpi and novel soy chhurpi cheese production using defined lactic acid bacterial strains of Sikkim Himalaya's traditional chhurpi. Hydrolysis of substrate proteins by starter proteinases resulted in a comparable peptide content in whey and soy whey which was associated with antioxidant and ACE inhibition potential. Peptidome analysis of Lactobacillus delbrueckii WS4 whey and soy whey revealed the presence of several bioactive peptides including the multifunctional peptides PVVVPPFLQPE and YQEPVLGPVRGPFPIIV. In silico analyses predicted the antihypertensive potential of whey and soy whey peptides with strong binding affinity for ACE active sites. QSAR models predicted the highest ACE inhibition potential (IC50) for the ß-casein-derived decapeptide PVRGPFPIIV (0.95 µM) and the Kunitz trypsin inhibitor protein-derived nonapeptide KNKPLVVQF (16.64 µM). Chhurpi whey and soy whey can be explored as a valuable source of diverse and novel bioactive peptides for applications in designer functional foods development.


Subject(s)
Lactobacillus delbrueckii , Peptides , Lactobacillus delbrueckii/metabolism , Peptides/chemistry , Peptides/pharmacology , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Cheese/microbiology , Cheese/analysis , Whey/chemistry , Functional Food , Antioxidants/pharmacology , Antioxidants/chemistry , Whey Proteins/chemistry
2.
Crit Rev Food Sci Nutr ; : 1-19, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37405373

ABSTRACT

With the growing demand for functional foods having better nutraceutical properties, lactic acid bacteria (LAB) has become an important industrial microorganism. LAB play a significant role in the functional food industry by exhibiting probiotic properties and has the ability to produce various biologically active metabolites such as γ-aminobutyric acid (GABA), exopolysaccharides (EPSs), conjugated linoleic acid (CLA), bacteriocins, reuterin and reutericyclin, which provides enhanced nutraceutical properties to the final food products. LAB are also known to produce several specific enzymes essential for producing substrate-derived bioactive compounds, such as polyphenols, bioactive peptides, inulin-type fructans and ß-glucans, fatty acids, and polyols. These compounds exhibit many health benefits, including better mineral absorption, oxidative stress protection, blood glucose and cholesterol-lowering properties, prevention of gastrointestinal tract infections and improved cardiovascular function. Further, metabolically engineered LAB have been widely used for the nutritive enhancement of different food products and the application of CRISPR-Cas9 holds tremendous potential for the engineering of food cultures. This review provides an overview of the use of LAB as probiotics, its application in producing fermented foods and nutraceutical products, and its health benefits on the host.

3.
Curr Genet ; 68(3-4): 375-391, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35532798

ABSTRACT

The genomic analysis of industrially important bacteria can help in understanding their capability to withstand extreme environments and shed light on their metabolic capabilities. The whole genome of a previously reported broad temperature active lipase-producing Pseudomonas sp. HS6, isolated from snow-covered soil of the Sikkim Himalayan Region, was analyzed to understand the capability of the bacterium to withstand cold temperatures and study its lipolytic nature. Pseudomonas sp. HS6 was found to be psychrotolerant with an optimal growth temperature ranging between 25 and 30 °C, with the ability to grow at 5 °C. The genome harbours various cold-adaptation genes, such as cold-shock proteins, fatty acid alteration, and cold stress-tolerance genes, supporting the psychrotolerant nature of the organism. The comparative analysis of Pseudomonas sp. HS6 genome showed the presence of amino acid substitutions in genes that favor efficient functioning and flexibility at cold temperatures. Genome mining revealed the presence of four triacylglycerol lipases, among which the putative lipase 3 was highly similar to the broad temperature-active lipase purified and characterized in our previous study. In silico studies of putative lipase 3 revealed broad substrate specificity with partial and no inhibition of the enzyme activity in the presence of PMSF and orlistat. The presence of genes associated with cold adaptations and true lipases with activity at broad temperature and substrate specificity in the genome of Pseudomonas sp. HS6 makes this bacterium a suitable candidate for industrial applications.


Subject(s)
Lipase , Pseudomonas , Cold Temperature , Genomics , Lipase/chemistry , Lipase/genetics , Lipase/metabolism , Pseudomonas/genetics , Sikkim , Snow , Soil , Substrate Specificity
4.
Bioengineered ; 13(4): 9435-9454, 2022 04.
Article in English | MEDLINE | ID: mdl-35387556

ABSTRACT

Betacoronaviruses (ß-CoVs) have caused major viral outbreaks in the last two decades in the world. The mutation and recombination abilities in ß-CoVs resulted in zoonotic diseases in humans. Proteins responsible for viral attachment and replication are highly conserved in ß-CoVs. These conserved proteins have been extensively studied as targets for preventing infection and the spread of ß-CoVs. Peptides are among the most promising candidates for developing vaccines and therapeutics against viral pathogens. The immunostimulatory and viral inhibitory potential of natural and synthetic peptides has been extensively studied since the SARS-CoV outbreak. Food-derived peptides demonstrating high antiviral activity can be used to develop effective therapeutics against ß-CoVs. Specificity, tolerability, and customizability of peptides can be explored to develop potent drugs against ß-CoVs. However, the proteolytic susceptibility and low bioavailability of peptides pose challenges for the development of therapeutics. This review illustrates the potential role of peptides in eliciting an adaptive immune response and inhibiting different stages of the ß-CoV life cycle. Further, the challenges and future directions associated with developing peptide-based therapeutics and vaccines against existing and future ß-CoV pathogens have been discussed.


Subject(s)
Coronavirus Infections , Vaccines , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Humans , Mutation , Peptides/genetics , Peptides/therapeutic use , Vaccines/therapeutic use
5.
3 Biotech ; 11(11): 479, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34790503

ABSTRACT

Microorganisms striving in extreme environments and exhibiting optimal growth and reproduction at low temperatures, otherwise known as psychrophilic microorganisms, are potential sources of cold-active enzymes. Owing to higher stability and cold activity, these enzymes are gaining enormous attention in numerous industrial bioprocesses. Applications of several cold-active enzymes have been established in the food industry, e.g., ß-galactosidase, pectinase, proteases, amylases, xylanases, pullulanases, lipases, and ß-mannanases. The enzyme engineering approaches and the accumulating knowledge of protein structure and function have made it possible to improve the catalytic properties of interest and express the candidate enzyme in a heterologous host for a higher level of enzyme production. This review compiles the relevant and recent information on the potential uses of different cold-active enzymes in the food industry.

6.
Bioresour Technol ; 309: 123352, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32299046

ABSTRACT

The aim of this study was to explore novel source of lipase from biodiversity hot spot region of Sikkim with activity at broad temperature range for application in detergent industry. Among the isolates, Pseudomonas helmanticensis HS6 showed activity at wide range of temperatures was selected for lipase production. Statistical optimisation for enhanced production of lipase resulted in enhancement of lipase activity from 2.3 to 179.3 U/mg. Lipase was purified resulting in 18.78 fold purification, 5.58% yield and high specific activity of 3368 U/mg. The partially purified lipase was found to be active in wide range of temperature (5-80 °C) and pH (6-9), showing optimum activity at 50 °C at pH 7. Peptide sequences on mass spectrometric analysis of purified lipase showed similarity to lipase family protein of three species of Pseudomonas. Both crude and purified lipase retained residual activity of 40-80% after 3 h of incubation with commercial detergents suggesting its application in detergent industry.


Subject(s)
Detergents , Lipase , Enzyme Stability , Hydrogen-Ion Concentration , Pseudomonas , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL