Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 75
1.
J Toxicol Environ Health A ; 87(12): 516-531, 2024 Jun 17.
Article En | MEDLINE | ID: mdl-38619152

The bark extract from Endopleura uchi has been widely used in traditional medicine to treat gynecological-related disorders, diabetes, and dyslipidemias albeit without scientific proof. In addition, E. uchi bark extract safety, especially regarding mutagenic activities, is not known. The aim of this study was to determine the chemical composition, antitumor, and toxicological parameters attributed to an E. uchi bark aqueous extract. The phytochemical constitution was assessed by colorimetric and chromatographic analyzes. The antiproliferative effect was determined using sulforhodamine B (SRB) assay using 4 cancer cell lines. Cytotoxic and genotoxic activities were assessed utilizing MTT and comet assays, respectively, while mutagenicity was determined through micronucleus and Salmonella/microsome assays. The chromatographic analysis detected predominantly the presence of gallic acid and isoquercitrin. The antiproliferative effect was more pronounced in human colon adenocarcinoma (HT-29) and human breast cancer (MCF-7) cell lines. In the MTT assay, the extract presented an IC50 = 39.1 µg/ml and exhibited genotoxic (comet assay) and mutagenic (micronucleus test) activities at 20 and 40 µg/ml in mouse fibroblast cell line (L929) and mutagenicity in the TA102 and TA97a strains in the absence of S9 mix. Data demonstrated that E. uchi bark possesses bioactive compounds which exert cytotoxic and genotoxic effects that might be associated with its antitumor potential. Therefore, E. uchi bark aqueous extract consumption needs to be approached with caution in therapeutic applications.


Adenocarcinoma , Antineoplastic Agents , Colonic Neoplasms , Humans , Mice , Animals , Plant Extracts/chemistry , Plant Bark/chemistry , DNA Damage , Water , Mutagens , MCF-7 Cells
2.
Toxicol Res (Camb) ; 13(1): tfad117, 2024 Feb.
Article En | MEDLINE | ID: mdl-38178995

Urbanization and agricultural activities increased environmental contaminants. Integrated analysis of water parameters and bioassays represents an essential approach to evaluating aquatic resource quality. This study aimed to assess water quality by microbiological and physicochemical parameters as well as the toxicological effects of water samples on the Ames test and Caenorhabditis elegans model. Samples were collected during (collection 1) and after (collection 2) pesticide application in the upper (S1), middle (S2), and lower (S3) sections of the Rolante River, southern Brazil. Metals were determined by GFAAS and pesticides by UPLC-MS/MS. Bioassays using the Ames test and the nematode C. elegans were performed. Levels of microbiological parameters, as well as Mn and Cu were higher than the maximum allowed limits established by legislation in collection 2 compared to collection 1. The presence of pesticide was observed in both collections; higher levels were found in collection 1. No mutagenic effect was detected. Significant inhibition of body length of C. elegans was found in collection 1 at S2 (P < 0.001) and S3 (P < 0.001) and in collection 2 at S2 (P = 0.004). Comparing the same sampling site between collections, a significant difference was found between the site of collection (F(3,6)=8.75, P = 0.01) and the time of collection (F(1,2)=28.61, P = 0.03), for the S2 and S3 samples. C. elegans model was useful for assessing surface water quality/toxicity. Results suggest that an integrated analysis for the surface water status could be beneficial for future approaches.

3.
Food Chem Toxicol ; 182: 114211, 2023 Dec.
Article En | MEDLINE | ID: mdl-38007212

Minoxidil is regularly prescribed for alopecia, and its therapeutic potential has expanded in recent times. However, few studies have been conducted to evaluate its toxicity, and controversial findings regarding its mutagenic activities remain unsolved. This study aimed to access cytotoxic, genotoxic, and mutagenic properties of minoxidil using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay, comet assay, and micronucleus test in mouse fibroblast (L929) cells and its point mutation induction potential in the Salmonella/microsome assay. Furthermore, an in vivo toxicity assessment was conducted in Caenorhabditis elegans. Minoxidil showed cytotoxicity at 2.0 mg/mL in MTT assay. Genotoxicity was observed after 3 h treatment in L929 cells using comet assay. No mutagenic effect was observed in both the micronucleus test and the Salmonella/microsome assay. The lethal dose 50 in C. elegans was determined to be 1.75 mg/mL, and a delay in body development was detected at all concentrations. In conclusion, minoxidil induces DNA damage only in early treatment, implying that this DNA damage may be repairable. This observation corroborates the absence of mutagenic activities observed in L929 cells and Salmonella typhimurium strains. However, the toxicity of minoxidil was evident in both C. elegans and L929 cells, underscoring the need for caution in its use.


Caenorhabditis elegans , Minoxidil , Mice , Animals , Mutagenicity Tests , Minoxidil/toxicity , Comet Assay , DNA Damage , Micronucleus Tests , Mutagens/toxicity , Alopecia/chemically induced
4.
J Toxicol Environ Health A ; 86(18): 678-695, 2023 09 17.
Article En | MEDLINE | ID: mdl-37482814

Hymenaea genus has been used in folk medicine in Brazil, but few studies investigated its toxicity profile. Thus, the aim of this study was to determine toxicological parameters of Hymenaea courbaril stem bark hydroalcoholic extract by utilizing three cell lines including murine macrophages (RAW 264.7), mouse fibroblast cells (L929) and human lung fibroblast (MRC-5), as well as Salmonella/microsome assay, and in vivo Caenorhabditis elegans model. The predominant detected phytoconstituents in the extract were coumarins, flavonoids, phenolics, tannins and saponins and by HPLC analysis, astilbin (AST) was found to be the main component. The DPPH assay demonstrated that H. courbaril hydroalcoholic extract exhibited potent antioxidant activity, with an IC50 of 3.12 µg/ml. The extract at concentrations of 400 and 800 µg/ml decreased cell viability 48 hr after treatment in L929 and MRC-5 cell lines. In the Raw 264.7 strain, just the highest concentration (800 µg/ml) lowered cell viability within 48 hr following exposure. The concentration of 100 µg/ml did not markedly affect cell viability in the trypan blue assay. In the alkaline comet assay the extract was found to be non-genotoxic. In the Ames test, the extract exhibited low mutagenic potential without metabolic activation, since only the highest concentrations produced an effect. H. courbaril extract only affected the survival of C. elegans at concentrations of 800 and 1600 µl/ml. These findings demonstrate that H. courbaril extract appears to exert low toxicity as evidenced in vitro and mutagenicity assays; however, the biological relevance of the response of C. elegans survival to safety assessments needs further studies.


Caenorhabditis elegans , Hymenaea , Mice , Humans , Animals , Plant Extracts/toxicity , Plant Bark , Cell Line
5.
Chem Biol Interact ; 382: 110652, 2023 Sep 01.
Article En | MEDLINE | ID: mdl-37524295

Morphine is the most common opioid analgesic administered to treat pain in patients undergoing cancer chemotherapy. This study aimed to evaluate the cytotoxic and mutagenic effects of morphine alone and in combination with doxorubicin (Dox), an antineoplastic agent largely used in patients with solid cancers. Cytotoxicity was evaluated in neuroblastoma (SH-SY5Y) and fibroblast (V79) cells using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) colorimetric assay while mutagenicity was assessed using the Salmonella/microsome assay in the absence and in the presence of S9 mix. Morphine showed a cytotoxic effect mainly on SH-SY5Y cells and reduced the cytotoxic effects of Dox when evaluated in a co-treatment procedure. In the Salmonella/microsome assay, it was observed that morphine did not induce mutations and, in fact, decreased the mutagenic effects induced by Dox in TA98 and TA102 strains in the absence of metabolic activation. Furthermore, in the presence of metabolic activation, no induction of mutations was observed with morphine. In conclusion, morphine decreased Dox cytotoxicity in both neuronal and non-neuronal cells and showed antimutagenic effects in the TA102 strain which detects mutagens inducing DNA oxidative damages. However, morphine decreased frameshift mutations induced by Dox in non-cytotoxic concentrations, an effect suggesting interference of Dox intercalation activity that could decrease its chemotherapeutic efficacy. These compelling findings highlight the importance of conducting further studies to explore the potential implications of co-administering morphine and Dox during cancer chemotherapy.


Mutagens , Neuroblastoma , Humans , Morphine/pharmacology , Mutagenicity Tests/methods , Doxorubicin/pharmacology
6.
J Ethnopharmacol ; 314: 116614, 2023 Oct 05.
Article En | MEDLINE | ID: mdl-37164253

ETHNOPHARMACOLOGICAL RELEVANCE: Aloysia gratissima leaves are popularly used to treat respiratory, digestive, and nervous system disorders. Several studies have been carried out to determine the biological activity of A. gratissima, such as its antibacterial and anti-edematogenic activities, but despite the beneficial uses of A. gratissima, few studies have examined the toxicological profile of this plant. AIM OF THE STUDY: This study aimed to determine the chemical composition, cytotoxic, genotoxic, mutagenic potential, and antioxidant activity of an aqueous extract of A. gratissima leaves (AG-AEL). MATERIAL AND METHODS: The phytochemical constitution of AG-AEL was assessed by colorimetric analyses and High-performance liquid chromatography (HPLC). The inorganic elements were detected by Particle-Induced X-ray Emission (PIXE). The antioxidant, cytotoxicity, genotoxic, and mutagenic activities were evaluated in vitro by Di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH), Sulforhodamine B (SRB) assay, comet assay, and Salmonella/microsome assays. RESULTS: AG-AEL indicated the presence of terpenoids, flavonoids, and phenolic acids. HPLC detected rutin at 2.41 ± 0.33 mg/100 mg. PIXE analysis indicated the presence of Mg, Si, P, S, K, Ca, Mn, and Zn. The 50% inhibitory concentration was 84.17 ± 3.17 µg/mL in the DPPH assay. Genotoxic effects were observed using the Comet assay in neuroblastoma (SH-SY5Y) cells and mutations were observed in TA102 and TA97a strains. The extract showed cytotoxic activities against ovarian (OVCAR-3), glioblastoma (U87MG), and colon (HT-29) cancer cell lines. CONCLUSIONS: In conclusion, AG-AEL increased DNA damage, induced frameshift, and oxidative mutations, and showed cytotoxic activities against different cancer cells. The in vitro toxicological effects observed suggest that this plant preparation should be used with caution, despite its pharmacological potential.


Neuroblastoma , Ovarian Neoplasms , Humans , Female , Apoptosis , Plant Extracts/toxicity , Plant Extracts/chemistry , Cell Line, Tumor , Mutagens/pharmacology , Antioxidants/toxicity
7.
Naunyn Schmiedebergs Arch Pharmacol ; 396(5): 951-962, 2023 05.
Article En | MEDLINE | ID: mdl-36536207

Asperuloside (ASP) and geniposide (GP) are iridoids that have shown various biological properties, such as reduction of inflammation, oxidative stress, and neuroprotection. The aim of this study was to investigate the mechanism of action of ASP and GP through the experimental model of pilocarpine-induced seizures. Mice were treated daily with saline, valproic acid (VPA), GP (5, 25, or 50 mg/kg), or ASP (20 or 40 mg/kg) for 8 days. Pilocarpine (PILO) treatment was administered after the last day of treatment, and the epileptic behavior was recorded for 1 h and analyzed by an adapted scale. Afterward, the hippocampus and blood samples were collected for western blot analyses, ELISA and comet assay, and bone marrow to the micronucleus test. We evaluated the expression of the inflammatory marker cyclooxygenase-2 (COX-2), GluN2B, a subunit of the NMDA receptor, pGluR1, an AMPA receptor, and the enzyme GAD-1 by western blot and the cytokine TNF-α by ELISA. The treatments with GP and ASP were capable to decrease the latency to the first seizure, although they did not change the latency to status epilepticus (SE). ASP demonstrated a genotoxic potential analyzed by comet assay; however, the micronuclei frequency was not increased in the bone marrow. The GP and ASP treatments were capable to reduce COX-2 and GluN2B receptor expression after PILO exposure. This study suggests that GP and ASP have a protective effect on PILO-induced seizures, decreasing GluN2B receptor and COX-2 expression.


Pilocarpine , Receptors, N-Methyl-D-Aspartate , Rats , Mice , Animals , Pilocarpine/toxicity , Cyclooxygenase 2/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Rats, Wistar , Seizures/chemically induced , Seizures/drug therapy , Seizures/metabolism , Iridoids/pharmacology , Iridoids/therapeutic use , Hippocampus , Disease Models, Animal
8.
Acta Histochem ; 124(4): 151894, 2022 May.
Article En | MEDLINE | ID: mdl-35447441

This study aimed to evaluate the efficacy and safety of a topical and oral administration of pumpkin seed oil (PSO) on the hair growth of BALB/c male mice. The animals had their dorsal area shaved (2 ×2 cm) and they were divided into 6 experimental groups. They received orally saline (OS), finasteride (F), or PSO (OP) for 14 days; or topically saline (TS), minoxidil (M), or PSO (TP) for 7 days. The euthanasia of all of the mice occurred on the 22nd day, and the histological slides from the skin area were analyzed. Lipoperoxidation in the liver was assessed through the TBARS method and was also evaluated by the antioxidant enzymes (SOD and CAT). The comet assay and the micronucleus tests were performed for genotoxic/mutagenic safety analyses. A significant increase in the number of hair follicles in the TP group was seen (8.8 ± 0.8) but it was disorganized, with loose dermal collagen. Finasteride presented a significant increase in the levels of the TBARS, SOD, and CAT in the liver, and M increased the DNA damage in the blood and the liver tissues. PSO did not induce any significant changes. In addition, PSO did not induce genotoxic or mutagenic effects. In conclusion, the oral PSO for 14 days acted in the proliferation of the hair follicles, without toxicity signals in the liver. DATA AVAILABILITY: The authors confirm that all of the relevant data is included in the article and/or in the supplementary information file.


Cucurbita , Finasteride , Administration, Topical , Alopecia/pathology , Animals , Finasteride/therapeutic use , Hair/pathology , Male , Mice , Plant Oils/toxicity , Superoxide Dismutase , Thiobarbituric Acid Reactive Substances
9.
Inflammation ; 45(5): 1968-1984, 2022 Oct.
Article En | MEDLINE | ID: mdl-35419738

Nonalcoholic steatohepatitis (NASH) is a disease with a high incidence worldwide, but its diagnosis and treatment are poorly managed. In this study, NASH pathophysiology and DNA damage biomarkers were investigated in mice with NASH treated and untreated with melatonin (MLT). C57BL/6 mice were fed a methionine- and choline-deficient (MCD) diet for 4 weeks to develop NASH. Melatonin was administered at 20 mg/kg during the last 2 weeks. Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were measured, and hepatic tissue was dissected for histological analysis, evaluation of lipoperoxidation, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), as well as nuclear factor-erythroid 2 (Nrf2), tumor necrosis factor alpha (TNF-α), inducible nitric oxide synthase (iNOS), and transforming growth factor beta (TGF-ß) expression by immunohistochemistry. DNA damage was evaluated using Comet assay, while a micronucleus test in bone marrow was performed to assess the genomic instability associated with the disease. Melatonin decreased AST and ALT, liver inflammatory processes, balloonization, and fibrosis in mice with NASH, decreasing TNF-α, iNOS, and TGF-ß, as well as oxidative stress, shown by reducing lipoperoxidation and intensifying Nrf2 expression. The SOD and GPx activities were increased, while CAT was decreased by treatment with MLT. Although the micronucleus frequency was not increased in mice with NASH, a protective effect on DNA was observed with MLT treatment in blood and liver tissues using Comet assay. As conclusions, MLT slows down the progression of NASH, reducing hepatic oxidative stress and inflammatory processes, inhibiting DNA damage via anti-inflammatory and antioxidant actions.


Choline Deficiency , Melatonin , Non-alcoholic Fatty Liver Disease , Alanine Transaminase , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Aspartate Aminotransferases , Biomarkers/metabolism , Catalase/metabolism , Choline/analysis , Choline/metabolism , Choline/pharmacology , Choline Deficiency/complications , Choline Deficiency/metabolism , DNA Damage , Diet , Glutathione Peroxidase/metabolism , Inflammation/metabolism , Liver/metabolism , Melatonin/pharmacology , Melatonin/therapeutic use , Methionine/analysis , Methionine/genetics , Methionine/metabolism , Mice , Mice, Inbred C57BL , NF-E2-Related Factor 2/metabolism , Nitric Oxide Synthase Type II/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Oxidative Stress , Superoxide Dismutase/metabolism , Transforming Growth Factor beta/metabolism , Tumor Necrosis Factor-alpha/metabolism
10.
Acta Sci Pol Technol Aliment ; 21(1): 101-109, 2022.
Article En | MEDLINE | ID: mdl-35174692

BACKGROUND: Overweight and obesity are associated with deaths and diseases worldwide. Cordia ecalyculata is a plant marketed as a slimmer. METHODS: The study evaluated the anti-obesity effects of the dry extract from C. ecalyculata in rats fed with a standard diet (STD) or cafeteria diet (CD) receiving the dry extract from C. ecalyculata at 500, 1000, and 2000 mg/kg for 40 days. Furthermore, it evaluated the slimming effect on diet-induced obese rats by the treatment with the same doses for 30 days. The bodyweight of the rats, as well as the intake of food, was measured. Blood samples were collected to determine the liver function (albumin, alanine transaminase (ALT), alkaline phosphatase (ALP), glucose), renal function (urea and creatinine), and lipid profile (cholesterol, triglycerides). RESULTS: The genotoxic effect in peripheral blood was assessed through the comet assay. A lower C. ecalyculata dose significantly prevented the weight gain in rats fed with STD and CD and decreased body weight and intake food of obese rats. The biochemical parameters were not altered, except to increase the serum albumin. Only the higher dose induced DNA damage when evaluated in rats fed with CD in the slimming evaluation model used. CONCLUSIONS: These results reinforce the extract as an anti-obesity and slimming supplement.


Cordia , Animals , Body Weight , DNA Damage , Diet , Diet, High-Fat , Obesity , Rats
11.
Lasers Med Sci ; 37(2): 1235-1244, 2022 Mar.
Article En | MEDLINE | ID: mdl-34297266

Investigate the effects of low-level lasers therapy (LLLT) aiming abdominal lipolysis. Female Wistar rats received applications of LLLT directly in the abdominal skin twice a week (5 weeks). Except the control group (n = 5), animals received treatments with red wavelength 660 nm being (I) R3.3 group (n = 5): 3.3 J/cm2, and (II) R5 group (n = 5): 5 J/cm2, or infrared wavelength 808 nm being (III) IR3.3 group (n = 5): 3.3 J/cm2, and (IV) IR5 group (n = 5): 5 J/cm2. Abdominal subcutaneous and liver tissues were evaluated histologically. Levels of thiobarbituric acid reactive substances (TBARS) and catalase (CAT) activity were analyzed in liver tissue. In the peripheral blood aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglycerides, and total cholesterol were investigated. Micronucleus assay was performed in the bone marrow. Except for the IR3.3 group, all treated groups reduced the body weight (p < 0.001). The R5 group reduced the abdominal subcutaneous tissue weight and thickness (p < 0.05), even though all treated groups reduced the number of adipocytes and its size (p < 0.001). No histological changes in the liver. There were no alterations in the triglycerides and LDL levels. The IR5 group increased the total cholesterol levels and decreased the HDL, ALT (both p < 0.05), and AST levels (p < 0.001). The group IR3.3 showed higher levels of ALP (p < 0.01). The R3.3 group increased the TBARS and CAT activity (p < 0.05). No mutagenic effects were found. The red laser treatment at 5 J/cm2 led to lipolysis and did not alter the liver's parameters.


Low-Level Light Therapy , Animals , Aspartate Aminotransferases/metabolism , Aspartate Aminotransferases/pharmacology , Female , Lipolysis , Liver/pathology , Low-Level Light Therapy/adverse effects , Rats , Rats, Wistar , Subcutaneous Tissue
12.
Lasers Med Sci ; 37(3): 1973-1982, 2022 Apr.
Article En | MEDLINE | ID: mdl-34735658

Photobiomodulation (PBM) might be an intervention method to mitigate sarcopenia in cirrhotic patients. Given the lack of research on this issue, the goal of this study was to evaluate possible beneficial effects of PBM on the structural and functional properties of skeletal muscle from cirrhotic rats. Cirrhosis was induced by secondary bile duct ligation (BDL). Wistar rats were randomized into four groups: sham-operated control (Sham), Sham + PBM, BDL, and BDL + PBM. After cirrhosis induction, a dose of PBM (1 J; 100mW; 10 s; 880 nm; 6 × per week) was applied to each quadriceps, from the 15th to the 45th day after surgery. The locomotor ability was performed using an open-field task. The muscle structure was analyzed using histological methods. Cell damage was also evaluated assessing oxidative stress and DNA damage markers, and IL-1ß pro-inflammatory interleukin by immunohistochemical analysis. An increase in the number of crossings was observed in the BDL + PBM group in relation to BDL. The BDL group showed muscle atrophy and increased IL-1ß in relation to Sham, while in the BDL + PBM group, the fiber muscle was restructured and there was a decrease of IL-1 ß. TBARS increased in the liver and muscle tissues in the BDL group and decreased it in the BDL + PBM group. SOD increased while CAT decreased in the BDL + PBM group in relation to the BDL group. No genotoxic or mutagenic effect was observed for PBM treatment. PBM improved the locomotion and the morphology of the muscle fibers, decreasing oxidative stress and inflammation, without causing DNA damage in cirrhotic rats.


Liver , Muscle, Skeletal , Animals , Rats , Disease Models, Animal , Ligation , Liver/pathology , Liver Cirrhosis/complications , Muscle, Skeletal/pathology , Oxidative Stress , Rats, Wistar
13.
Toxicol In Vitro ; 79: 105300, 2022 Mar.
Article En | MEDLINE | ID: mdl-34933087

Sunscreening chemicals protect against damage caused by sunlight most absorbing UVA or UVB radiations. In this sense, 2-(2'-hydroxyphenyl)benzoxazole derivatives with amino substituents in the 4' and 5' positions have an outstandingly high Sun Protection Factor and adequate photostability, but their toxicity is not yet known. This study aimed to evaluate the toxicity of three synthetic 2-(2'-hydroxyphenyl)benzoxazole derivatives for their possible application as sunscreens. In silico tools were used in order to assess potential risks regarding mutagenic, carcinogenic, and skin sensitizing potential. Bioassays were performed in L929 cells to assess cytotoxicity in MTT assay and genotoxic activities in the Comet assay and micronucleus test. Also, the Salmonella/microsome assay was performed to evaluate gene mutations. The in silico predictions indicate a low risk of mutagenicity and carcinogenicity of the compounds while the skin sensitizing potential was low or inconclusive. The 2-(4'-amino-2'-hydroxyphenyl)benzoxazol compound was the most cytotoxic and genotoxic among the compounds evaluated in L929 cells, but none induced mutations in the Salmonella/microsome assay. The amino substituted at the 4' position of the phenyl ring appears to have greater toxicological risks than substituents at the 5' position of 2-(phenyl)benzoxazole. The findings warrant further studies of these compounds in cosmetic formulations.


Benzoxazoles/toxicity , Quantitative Structure-Activity Relationship , Sunscreening Agents/toxicity , Animals , Benzoxazoles/chemistry , Carcinogenesis/drug effects , Cell Line , Comet Assay , DNA Damage/drug effects , Mice , Micronucleus Tests , Mutagenicity Tests , Salmonella typhimurium/drug effects , Sunscreening Agents/chemistry
14.
Braz. J. Pharm. Sci. (Online) ; 58: e20547, 2022. tab, graf
Article En | LILACS-Express | LILACS | ID: biblio-1420372

Abstract Damage resulting from the incidence of ultraviolet (UV) radiation on the skin is common nowadays, with UVB (290-320 nm) and UVA (320-400 nm) radiation responsible for photoaging, sunburn and carcinogenesis. For this reason, sunscreens represent products of growing interest to prevent such damage. However, there are few organic filters marketed worldwide with photostability and effectiveness at wavelengths greater than 340 nm (long UVA), which justifies the exploration for new compounds. In this work, we determined the photostability and sun protection factor (SPF) of three 2-(2'-hydroxyphenyl)benzoxazole derivative dyes in order to develop new organic UV filters. UV-vis spectrophotometry has high level of reproducibility when compared with in vivo human clinical methods. Solubility determinations were performed in different solvents. The compounds absorbed UVA and UVB radiation, with maximum absorption wavelengths ranging from 336 to 374 nm. Photostability was evaluated using a solar simulator (3 J.m2.s-1 UVA radiation) for a maximum of 3 h. The 2-(amino-2'-hydroxyphenyl) benzoxazoles showed higher photostability than the acetylated derivative under the evaluated conditions. The three benzoxazoles presented SPF values of around 40 and preliminary results indicate that they show suitable properties to act as good chemical filters in photoprotective formulations.

15.
Exp Mol Pathol ; 121: 104662, 2021 08.
Article En | MEDLINE | ID: mdl-34146550

Sarcopenia is one of the most common features of cirrhosis, contributing to morbidity and mortality in this population. We aimed to evaluate the effect of melatonin (MLT) and exercise (EX) on the quadriceps muscle in rats with biliary cirrhosis induced by bile duct ligation (BDL). We used 48 males (mean weight = 300 g), divided into eight groups. A 20 mg/Kg MLT dose was administered via i.p. (1 x daily), and the EX, the animals were set to swim in couples for 10 min each day. Upon completion, blood, liver, and quadriceps samples were taken for analysis. In the liver enzymes analysis and comet assay results, a reduction was observed in the groups treated with MLT with/or EX comparing to the BDL group. In the evaluation of substances that react to thiobarbituric acid (TBARS), nitric oxide levels (NO), and tumor necrosis factor-alpha levels (TNF-α), there was a significant increase in the BDL group and a reduction in the treated groups. In the activity of the superoxide dismutase enzyme (SOD) and interleukin-10 levels (IL-10) concentrations, there was a significant increase in the treated groups of the BDL group. Histological analysis revealed muscle hypotrophy in the BDL group in comparison with the control group (CO) and increased muscle mass in the treated groups. There was an increase in weight gain and phase angle in the groups treated with MLT with/or EX comparing to the BDL group. We suggest that treatments may contribute to the reduction of muscle changes in cirrhotic patients.


Inflammation/therapy , Liver Cirrhosis/complications , Melatonin/pharmacology , Oxidative Stress , Physical Conditioning, Animal , Quadriceps Muscle/drug effects , Sarcopenia/therapy , Animals , Antioxidants/pharmacology , Inflammation/etiology , Inflammation/pathology , Male , Quadriceps Muscle/pathology , Rats , Rats, Wistar , Sarcopenia/etiology , Sarcopenia/pathology
16.
J Toxicol Environ Health A ; 84(17): 689-701, 2021 09 02.
Article En | MEDLINE | ID: mdl-34034641

Nicotiana tabacum is the most cultivated tobacco species in the state of Rio Grande do Sul, Brazil. Workers who handle the plant are exposed to the leaf components during the harvesting process and when separating and classifying the dried leaves. In addition to nicotine, after the drying process, other components may be found including tobacco-specific nitrosamines, polycyclic aromatic hydrocarbons, as well as pesticides residues. The objective of this study was to examine the genotoxicity attributed to the aqueous extract of dried tobacco leaves obtained from tobacco barns using Chinese hamster lung fibroblast cells (V79) as a model system by employing alkaline comet assay, micronucleus (MN) and Ames test. MTT assay was used to assess cytotoxicity and establish concentrations for this study. Data demonstrated cell viability > 85% for concentrations of 0.625-5 mg/ml while the comet assay indicated a significant increase in DNA damage at all concentrations tested. A significant elevation of MN and nuclear buds (NBUD) was found for 5 mg/ml compared to control and other dry tobacco leaves concentrations (0.625-2.5 mg/ml). Mutagenicity was not found using the Salmonella/Microsome test (TA98, TA100, and TA102 strains) with and without metabolic activation. The concentration of inorganic elements was determined employing the PIXE technique, and 13 inorganic elements were detected. Using CG/MS nicotine amounts present were 1.56 mg/g dry tobacco leaf powder. Due to the observed genotoxicity in V79 cells, more investigations are needed to protect the health of tobacco workers exposed daily to this complex mixture of toxic substances present in dry tobacco leaves.


Mutagens/toxicity , Nicotiana/chemistry , Plant Leaves/chemistry , Animals , Cell Line , Comet Assay , Cricetulus , Micronucleus Tests , Mutagenicity Tests
17.
Biomed Pharmacother ; 139: 111672, 2021 Jul.
Article En | MEDLINE | ID: mdl-33965731

Human thymidine phosphorylase (hTP) is overexpressed in several solid tumors and is commonly associated with aggressiveness and unfavorable prognosis. 6-(((1,3-Dihydroxypropan-2-yl)amino)methyl)-5-iodopyrimidine-2,4(1H,3H)-dione (CPBMF-223) is a noncompetitive hTP inhibitor, which has been described as a tumor angiogenesis inhibitor. The present study investigated the effects of CPBMF-223 in a xenograft tumor induced by human colorectal carcinoma cells (HCT-116). Additionally, CPBMF-223 capacity to reduce cell migration, its toxicological profile, and pharmacokinetic characteristics, were also evaluated. The intraperitoneal treatment with CPBMF-223 markedly prevented the relative tumor growth with an efficacy similar to that observed for 5-fluorouracil. Interestingly, number of vessels were significantly decreased in the treated groups. Moreover, CPBMF-223 significantly reduced the migration of cell line HCT-116. In the Ames assay and in an acute oral toxicity test, the molecule did not alter any evaluated parameter. Using the zebrafish toxicity model, cardiac and locomotor parameters were slightly changed. Regarding the pharmacokinetics profile, CPBMF-223 showed clearance of 9.42 L/h/kg after intravenous administration, oral bioavailability of 13.5%, and a half-life of 0.75 h. Our findings shed new light on the role of hTP in colorectal cancer induced by HCT-116 cell in mice, pointing out CPBMF-223 as, hopefully, a promising drug candidate.


Antineoplastic Agents/therapeutic use , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/enzymology , Enzyme Inhibitors/therapeutic use , Thymidine Phosphorylase/antagonists & inhibitors , Angiogenesis Inhibitors/pharmacokinetics , Angiogenesis Inhibitors/therapeutic use , Angiogenesis Inhibitors/toxicity , Animals , Antimetabolites, Antineoplastic/pharmacology , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/toxicity , Cell Line, Tumor , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/toxicity , Female , Fluorouracil/pharmacology , HCT116 Cells , Half-Life , Humans , Male , Mice , Mice, Inbred BALB C , Mutagenicity Tests , Xenograft Model Antitumor Assays , Zebrafish
18.
Article En | MEDLINE | ID: mdl-33985697

Coal burning generates gases, particles, and condensation by-products that are harmful to soil, water, and to the atmosphere. The aim of this study was to characterize and identify the cytotoxic and mutagenic potential of soil samples from the cities of Aceguá, Bagé, Candiota and Pinheiro Machado, near a large coal-fired power plant. Our study describes soil characteristics and contributes to the evaluation of the genotoxic activity of coal mining and burning, using the Comet Assay and Micronucleus test in V79 cells, as well as mutagenicity assays with Salmonella typhimurium strains. Comet Assay results show that the winter soil samples of Candiota and Pinheiro Machado induced a significant increase of the Damage Index for cells, as well as for the Aceguá summer sample. The micronucleus test did not detect differences between cities and seasons. A component analysis indicates associations between results obtained in Comet Assay and Ti and phenanthene concentrations for Pinheiro Machado during the winter, and Al for Aceguá during the summer and Zn during the winter. Results of Salmonella/microsome assays were negative, only Candiota and Pinheiro Machado samples showed a statistical increase of his + colonies in TA102. Our work describes biological data on these cells exposed to coal-contaminated soil, confirming the sensitivity of the Comet Assay in V79 cells and Salmonella/microsome assay for the evaluation of the effects of complex mixtures. These findings help to understand the spatial distribution of contaminants in the local soil related to a power plant, which is important for planning public safety actions.


Coal/analysis , Soil/chemistry , Animals , Brazil , Cell Line , Cities , Coal/toxicity , Coal Mining/methods , Comet Assay/methods , Cricetulus , DNA Damage/drug effects , Environmental Monitoring/methods , Micronucleus Tests/methods , Mutagenesis/drug effects , Mutagens/toxicity , Power Plants , Seasons
19.
Neurochem Res ; 46(8): 2066-2078, 2021 Aug.
Article En | MEDLINE | ID: mdl-34019198

Gamma-decanolactone (GD) has been shown to reduce epileptic behavior in different models, inflammatory decreasing, oxidative stress, and genotoxic parameters. This study assessed the GD effect on the pentylenetetrazole (PTZ) model after acute and subchronic treatment. We evaluated the expression of the inflammatory marker cyclooxygenase-2 (COX-2), GluN2B, a subunit of the NMDA glutamate receptor, adenosine A1 receptor, and GD genotoxicity and mutagenicity. Male and female mice were treated with GD (300 mg/kg) for 12 days. On the tenth day, they were tested in the Hot Plate test. On the thirteenth day, all animals received PTZ (90 mg/kg), and epileptic behavior PTZ-induced was observed for 30 min. Pregabalin (PGB) (30 mg/kg) was used as a positive control. Samples of the hippocampus and blood were collected for Western Blotting analyses and Comet Assay and bone marrow to the Micronucleus test. Only the acute treatment of GD reduced the seizure occurrence and increased the latency to the first stage 3 seizures. Males treated with GD for 12 days demonstrated a significant increase in the expression of the GluN2B receptor and a decrease in the COX-2 expression. Acute and subchronic treatment with GD and PGB reduced the DNA damage produced by PTZ in males and females. There is no increase in the micronucleus frequency in bone marrow after subchronic treatment. This study suggests that GD, after 12 days, could not reduce PTZ-induced seizures, but it has been shown to protect against DNA damage, reduce COX-2 and increase GluN2B expression.


Cyclooxygenase 2/metabolism , Lactones/therapeutic use , Neuroprotective Agents/therapeutic use , Receptor, Adenosine A1/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Seizures/drug therapy , Animals , Body Weight/drug effects , DNA Damage/drug effects , Female , Lactones/toxicity , Male , Mice , Neuroprotective Agents/toxicity , Pentylenetetrazole , Seizures/chemically induced , Seizures/metabolism
20.
Toxicon ; 195: 20-23, 2021 May.
Article En | MEDLINE | ID: mdl-33689791

3-nitropropionic acid (3-NP) is a toxin that causes neural damage in the striatum and can lead to the development of Huntington's disease manifestations in animal models. Several studies have shown genotoxicity related to the 3-NP treatment. This study investigated potential genotoxicity and mutagenicity that was induced by a low dose (6.25 mg/kg i. p.) 3-NP subacute treatment (daily, over 6 days) in a rat model. The arterial blood and the frontal cortex were analyzed by the comet assay and the bone marrow by micronucleus. Surprisingly, the 3-NP subacute treatment with the low dose did not show genotoxic or mutagenic effects.


DNA Damage , Mutagens , Nitro Compounds/toxicity , Propionates/toxicity , Animals , Comet Assay , Dose-Response Relationship, Drug , Micronucleus Tests , Mutagenicity Tests , Mutagens/toxicity , Rats
...