Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Prev Vet Med ; 228: 106233, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38820831

ABSTRACT

Epidemiological modeling is a key lever for infectious disease control and prevention on farms. It makes it possible to understand the spread of pathogens, but also to compare intervention scenarios even in counterfactual situations. However, the actual capability of decision makers to use mechanistic models to support timely interventions is limited. This study demonstrates how artificial intelligence (AI) techniques can make mechanistic epidemiological models more accessible to farmers and veterinarians, and how to transform such models into user-friendly decision-support tools (DST). By leveraging knowledge representation methods, such as the textual formalization of model components through a domain-specific language (DSL), the co-design of mechanistic models and DST becomes more efficient and collaborative. This facilitates the integration of explicit expert knowledge and practical insights into the modeling process. Furthermore, the utilization of AI and software engineering enables the automation of web application generation based on existing mechanistic models. This automation simplifies the development of DST, as tool designers can focus on identifying users' needs and specifying expected features and meaningful presentations of outcomes, instead of wasting time in writing code to wrap models into web apps. To illustrate the practical application of this approach, we consider the example of Bovine Respiratory Disease (BRD), a tough challenge in fattening farms where young beef bulls often develop BRD shortly after being allocated into pens. BRD is a multi-factorial, multi-pathogen disease that is difficult to anticipate and control, often resulting in the massive use of antimicrobials to mitigate its impact on animal health, welfare, and economic losses. The DST developed from an existing mechanistic BRD model empowers users, including farmers and veterinarians, to customize scenarios based on their specific farm conditions. It enables them to anticipate the effects of various pathogens, compare the epidemiological and economic outcomes associated with different farming practices, and decide how to balance the reduction of disease impact and the reduction of antimicrobial usage (AMU). The generic method presented in this article illustrates the potential of artificial intelligence (AI) and software engineering methods to enhance the co-creation of DST based on mechanistic models in veterinary epidemiology. The corresponding pipeline is distributed as an open-source software. By leveraging these advancements, this research aims to bridge the gap between theoretical models and the practical usage of their outcomes on the field.


Subject(s)
Artificial Intelligence , Animals , Cattle , Software , Decision Support Techniques , Cattle Diseases/prevention & control , Cattle Diseases/epidemiology
2.
Prev Vet Med ; 219: 106009, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37688889

ABSTRACT

Bovine Respiratory Disease (BRD) affects young bulls, causing animal welfare and health concerns as well as economical costs. BRD is caused by an array of viruses and bacteria and also by environmental and abiotic factors. How farming practices influence the spread of these causal pathogens remains unclear. Our goal was to assess the impact of zootechnical practices on the spread of three causal agents of BRD, namely the bovine respiratory syncytial virus (BRSV), Mannheimia haemolytica and Mycoplasma bovis. In that extent, we used an individual based stochastic mechanistic model monitoring risk factors, infectious processes, detection and treatment in a farm possibly featuring several batches simultaneously. The model was calibrated with three sets of parameters relative to each of the three pathogens using data extracted from literature. Separated batches were found to be more effective than a unique large one for reducing the spread of pathogens, especially for BRSV and M.bovis. Moreover, it was found that allocating high risk and low risk individuals into separated batches participated in reducing cumulative incidence, epidemic peaks and antimicrobial usage, especially for M. bovis. Theses findings rise interrogations on the optimal farming practices in order to limit BRD occurrence and pave the way to models featuring coinfections and collective treatments p { line-height: 115%; margin-bottom: 0.25 cm; background: transparent}a:link { color: #000080; text-decoration: underline}a.cjk:link { so-language: zxx}a.ctl:link { solanguage: zxx}.


Subject(s)
Bovine Respiratory Disease Complex , Cattle Diseases , Mannheimia haemolytica , Respiratory Tract Diseases , Animals , Cattle , Male , Farms , Respiratory Tract Diseases/veterinary , Cattle Diseases/epidemiology , Cattle Diseases/prevention & control , Cattle Diseases/microbiology , Agriculture , Bovine Respiratory Disease Complex/epidemiology , Bovine Respiratory Disease Complex/prevention & control , Bovine Respiratory Disease Complex/microbiology
4.
Vet Res ; 53(1): 77, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36195961

ABSTRACT

Bovine respiratory disease (BRD) dramatically affects young calves, especially in fattening facilities, and is difficult to understand, anticipate and control due to the multiplicity of factors involved in the onset and impact of this disease. In this study we aimed to compare the impact of farming practices on BRD severity and on antimicrobial usage. We designed a stochastic individual-based mechanistic BRD model which incorporates not only the infectious process, but also clinical signs, detection methods and treatment protocols. We investigated twelve contrasted scenarios which reflect farming practices in various fattening systems, based on pen sizes, risk level, and individual treatment vs. collective treatment (metaphylaxis) before or during fattening. We calibrated model parameters from existing observation data or literature and compared scenario outputs regarding disease dynamics, severity and mortality. The comparison of the trade-off between cumulative BRD duration and number of antimicrobial doses highlighted the added value of risk reduction at pen formation even in small pens, and acknowledges the interest of collective treatments for high-risk pens, with a better efficacy of treatments triggered during fattening based on the number of detected cases.


Subject(s)
Anti-Infective Agents , Bovine Respiratory Disease Complex , Respiratory Tract Diseases , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Bovine Respiratory Disease Complex/diagnosis , Bovine Respiratory Disease Complex/drug therapy , Bovine Respiratory Disease Complex/prevention & control , Cattle , Farms , Respiratory Tract Diseases/veterinary
5.
Epidemics ; 40: 100615, 2022 09.
Article in English | MEDLINE | ID: mdl-35970067

ABSTRACT

Robust epidemiological knowledge and predictive modelling tools are needed to address challenging objectives, such as: understanding epidemic drivers; forecasting epidemics; and prioritising control measures. Often, multiple modelling approaches can be used during an epidemic to support effective decision making in a timely manner. Modelling challenges contribute to understanding the pros and cons of different approaches and to fostering technical dialogue between modellers. In this paper, we present the results of the first modelling challenge in animal health - the ASF Challenge - which focused on a synthetic epidemic of African swine fever (ASF) on an island. The modelling approaches proposed by five independent international teams were compared. We assessed their ability to predict temporal and spatial epidemic expansion at the interface between domestic pigs and wild boar, and to prioritise a limited number of alternative interventions. We also compared their qualitative and quantitative spatio-temporal predictions over the first two one-month projection phases of the challenge. Top-performing models in predicting the ASF epidemic differed according to the challenge phase, host species, and in predicting spatial or temporal dynamics. Ensemble models built using all team-predictions outperformed any individual model in at least one phase. The ASF Challenge demonstrated that accounting for the interface between livestock and wildlife is key to increasing our effectiveness in controlling emerging animal diseases, and contributed to improving the readiness of the scientific community to face future ASF epidemics. Finally, we discuss the lessons learnt from model comparison to guide decision making.


Subject(s)
African Swine Fever Virus , African Swine Fever , Epidemics , African Swine Fever/epidemiology , Animals , Animals, Wild , Sus scrofa , Swine
6.
Epidemics ; 40: 100616, 2022 09.
Article in English | MEDLINE | ID: mdl-35878574

ABSTRACT

African swine fever (ASF) is an emerging disease currently spreading at the interface between wild boar and pig farms in Europe and Asia. Current disease control regulations, which involve massive culling with significant economic and animal welfare costs, need to be improved. Modelling enables relevant control measures to be explored, but conducting the exercise during an epidemic is extremely difficult. Modelling challenges enhance modellers' ability to timely advice policy makers, improve their readiness when facing emerging threats, and promote international collaborations. The ASF-Challenge, which ran between August 2020 and January 2021, was the first modelling challenge in animal health. In this paper, we describe the objectives and rules of the challenge. We then demonstrate the mechanistic multi-host model that was used to mimic as accurately as possible an ASF-like epidemic, provide a detailed explanation of the surveillance and intervention strategies that generated the synthetic data, and describe the different management strategies that were assessed by the competing modelling teams. We then outline the different technical steps of the challenge as well as its environment. Finally, we synthesize the lessons we learnt along the way to guide future modelling challenges in animal health.


Subject(s)
African Swine Fever Virus , African Swine Fever , Epidemics , African Swine Fever/epidemiology , African Swine Fever/prevention & control , Animals , Epidemics/veterinary , Europe/epidemiology , Sus scrofa , Swine
7.
Vet Res ; 52(1): 40, 2021 Mar 06.
Article in English | MEDLINE | ID: mdl-33676570

ABSTRACT

Leveraging artificial intelligence (AI) approaches in animal health (AH) makes it possible to address highly complex issues such as those encountered in quantitative and predictive epidemiology, animal/human precision-based medicine, or to study host × pathogen interactions. AI may contribute (i) to diagnosis and disease case detection, (ii) to more reliable predictions and reduced errors, (iii) to representing more realistically complex biological systems and rendering computing codes more readable to non-computer scientists, (iv) to speeding-up decisions and improving accuracy in risk analyses, and (v) to better targeted interventions and anticipated negative effects. In turn, challenges in AH may stimulate AI research due to specificity of AH systems, data, constraints, and analytical objectives. Based on a literature review of scientific papers at the interface between AI and AH covering the period 2009-2019, and interviews with French researchers positioned at this interface, the present study explains the main AH areas where various AI approaches are currently mobilised, how it may contribute to renew AH research issues and remove methodological or conceptual barriers. After presenting the possible obstacles and levers, we propose several recommendations to better grasp the challenge represented by the AH/AI interface. With the development of several recent concepts promoting a global and multisectoral perspective in the field of health, AI should contribute to defract the different disciplines in AH towards more transversal and integrative research.


Subject(s)
Artificial Intelligence/statistics & numerical data , Delivery of Health Care/methods , Veterinary Medicine/methods , Animals , Veterinary Medicine/instrumentation
8.
Proc Biol Sci ; 288(1944): 20202810, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33529565

ABSTRACT

Spatio-temporally heterogeneous environments may lead to unexpected population dynamics. Knowledge is needed on local properties favouring population resilience at large scale. For pathogen vectors, such as tsetse flies transmitting human and animal African trypanosomosis, this is crucial to target management strategies. We developed a mechanistic spatio-temporal model of the age-structured population dynamics of tsetse flies, parametrized with field and laboratory data. It accounts for density- and temperature-dependence. The studied environment is heterogeneous, fragmented and dispersal is suitability-driven. We confirmed that temperature and adult mortality have a strong impact on tsetse populations. When homogeneously increasing adult mortality, control was less effective and induced faster population recovery in the coldest and temperature-stable locations, creating refuges. To optimally select locations to control, we assessed the potential impact of treating them and their contribution to the whole population. This heterogeneous control induced a similar population decrease, with more dispersed individuals. Control efficacy was no longer related to temperature. Dispersal was responsible for refuges at the interface between controlled and uncontrolled zones, where resurgence after control was very high. The early identification of refuges, which could jeopardize control efforts, is crucial. We recommend baseline data collection to characterize the ecosystem before implementing any measures.


Subject(s)
Trypanosomiasis, African , Tsetse Flies , Animals , Ecosystem , Humans , Insect Vectors , Population Dynamics
9.
PLoS Comput Biol ; 15(9): e1007342, 2019 09.
Article in English | MEDLINE | ID: mdl-31518349

ABSTRACT

Stochastic mechanistic epidemiological models largely contribute to better understand pathogen emergence and spread, and assess control strategies at various scales (from within-host to transnational scale). However, developing realistic models which involve multi-disciplinary knowledge integration faces three major challenges in predictive epidemiology: lack of readability once translated into simulation code, low reproducibility and reusability, and long development time compared to outbreak time scale. We introduce here EMULSION, an artificial intelligence-based software intended to address those issues and help modellers focus on model design rather than programming. EMULSION defines a domain-specific language to make all components of an epidemiological model (structure, processes, parameters…) explicit as a structured text file. This file is readable by scientists from other fields (epidemiologists, biologists, economists), who can contribute to validate or revise assumptions at any stage of model development. It is then automatically processed by EMULSION generic simulation engine, preventing any discrepancy between model description and implementation. The modelling language and simulation architecture both rely on the combination of advanced artificial intelligence methods (knowledge representation and multi-level agent-based simulation), allowing several modelling paradigms (from compartment- to individual-based models) at several scales (up to metapopulation). The flexibility of EMULSION and its capability to support iterative modelling are illustrated here through examples of progressive complexity, including late revisions of core model assumptions. EMULSION is also currently used to model the spread of several diseases in real pathosystems. EMULSION provides a command-line tool for checking models, producing model diagrams, running simulations, and plotting outputs. Written in Python 3, EMULSION runs on Linux, MacOS, and Windows. It is released under Apache-2.0 license. A comprehensive documentation with installation instructions, a tutorial and many examples are available from: https://sourcesup.renater.fr/www/emulsion-public.


Subject(s)
Computational Biology/methods , Models, Biological , Software , Stochastic Processes , Animals , Cattle , Epidemiology , Humans , Plants
SELECTION OF CITATIONS
SEARCH DETAIL
...