Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 69
2.
Nat Commun ; 15(1): 2742, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38548752

The epidermal growth factor receptor, EGFR, is frequently activated in lung cancer and glioblastoma by genomic alterations including missense mutations. The different mutation spectra in these diseases are reflected in divergent responses to EGFR inhibition: significant patient benefit in lung cancer, but limited in glioblastoma. Here, we report a comprehensive mutational analysis of EGFR function. We perform saturation mutagenesis of EGFR and assess function of ~22,500 variants in a human EGFR-dependent lung cancer cell line. This approach reveals enrichment of erlotinib-insensitive variants of known and unknown significance in the dimerization, transmembrane, and kinase domains. Multiple EGFR extracellular domain variants, not associated with approved targeted therapies, are sensitive to afatinib and dacomitinib in vitro. Two glioblastoma patients with somatic EGFR G598V dimerization domain mutations show responses to dacomitinib treatment followed by within-pathway resistance mutation in one case. In summary, this comprehensive screen expands the landscape of functional EGFR variants and suggests broader clinical investigation of EGFR inhibition for cancers harboring extracellular domain mutations.


Glioblastoma , Lung Neoplasms , Humans , Glioblastoma/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , ErbB Receptors/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation
3.
Nat Protoc ; 18(7): 2014-2031, 2023 07.
Article En | MEDLINE | ID: mdl-37286821

Spheroid culture systems have allowed in vitro propagation of cells unable to grow in canonical cell culturing conditions, and may capture cellular contexts that model tumor growth better than current model systems. The insights gleaned from genome-wide clustered regularly interspaced short palindromic repeat (CRISPR) screening of thousands of cancer cell lines grown in conventional culture conditions illustrate the value of such CRISPR pooled screens. It is clear that similar genome-wide CRISPR screens of three-dimensional spheroid cultures will be important for future biological discovery. Here, we present a protocol for genome-wide CRISPR screening of three-dimensional neurospheres. While many in-depth protocols and discussions have been published for more typical cell lines, few detailed protocols are currently available in the literature for genome-wide screening in spheroidal cell lines. For those who want to screen such cell lines, and particularly neurospheres, we provide a step-by-step description of assay development tests to be performed before screening, as well as for the screen itself. We highlight considerations of variables that make these screens distinct from, or similar to, typical nonspheroid cell lines throughout. Finally, we illustrate typical outcomes of neurosphere genome-wide screens, and how neurosphere screens typically produce slightly more heterogeneous signal distributions than more canonical cancer cell lines. Completion of this entire protocol will take 8-12 weeks from the initial assay development tests to deconvolution of the sequencing data.


Clustered Regularly Interspaced Short Palindromic Repeats , Neoplasms , Humans , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , CRISPR-Cas Systems , Genome , Cell Line
4.
Cell Stem Cell ; 30(3): 312-332.e13, 2023 03 02.
Article En | MEDLINE | ID: mdl-36796362

Human genome variation contributes to diversity in neurodevelopmental outcomes and vulnerabilities; recognizing the underlying molecular and cellular mechanisms will require scalable approaches. Here, we describe a "cell village" experimental platform we used to analyze genetic, molecular, and phenotypic heterogeneity across neural progenitor cells from 44 human donors cultured in a shared in vitro environment using algorithms (Dropulation and Census-seq) to assign cells and phenotypes to individual donors. Through rapid induction of human stem cell-derived neural progenitor cells, measurements of natural genetic variation, and CRISPR-Cas9 genetic perturbations, we identified a common variant that regulates antiviral IFITM3 expression and explains most inter-individual variation in susceptibility to the Zika virus. We also detected expression QTLs corresponding to GWAS loci for brain traits and discovered novel disease-relevant regulators of progenitor proliferation and differentiation such as CACHD1. This approach provides scalable ways to elucidate the effects of genes and genetic variation on cellular phenotypes.


Neural Stem Cells , Zika Virus Infection , Zika Virus , Humans , Neural Stem Cells/metabolism , Cell Differentiation/genetics , Brain/metabolism , Zika Virus/metabolism , Gene Expression , Membrane Proteins/metabolism , RNA-Binding Proteins/metabolism
5.
Cancer Discov ; 13(3): 766-795, 2023 03 01.
Article En | MEDLINE | ID: mdl-36576405

Systematic identification of signaling pathways required for the fitness of cancer cells will facilitate the development of new cancer therapies. We used gene essentiality measurements in 1,086 cancer cell lines to identify selective coessentiality modules and found that a ubiquitin ligase complex composed of UBA6, BIRC6, KCMF1, and UBR4 is required for the survival of a subset of epithelial tumors that exhibit a high degree of aneuploidy. Suppressing BIRC6 in cell lines that are dependent on this complex led to a substantial reduction in cell fitness in vitro and potent tumor regression in vivo. Mechanistically, BIRC6 suppression resulted in selective activation of the integrated stress response (ISR) by stabilization of the heme-regulated inhibitor, a direct ubiquitination target of the UBA6/BIRC6/KCMF1/UBR4 complex. These observations uncover a novel ubiquitination cascade that regulates ISR and highlight the potential of ISR activation as a new therapeutic strategy. SIGNIFICANCE: We describe the identification of a heretofore unrecognized ubiquitin ligase complex that prevents the aberrant activation of the ISR in a subset of cancer cells. This provides a novel insight on the regulation of ISR and exposes a therapeutic opportunity to selectively eliminate these cancer cells. See related commentary Leli and Koumenis, p. 535. This article is highlighted in the In This Issue feature, p. 517.


Carcinoma , Humans , Ubiquitination , Cell Line , Signal Transduction , Ubiquitins
6.
Cancer Res ; 83(2): 285-300, 2023 01 18.
Article En | MEDLINE | ID: mdl-36398965

Aberrant RAS/MAPK signaling is a common driver of oncogenesis that can be therapeutically targeted with clinically approved MEK inhibitors. Disease progression on single-agent MEK inhibitors is common, however, and combination therapies are typically required to achieve significant clinical benefit in advanced cancers. Here we focused on identifying MEK inhibitor-based combination therapies in neuroblastoma with mutations that activate the RAS/MAPK signaling pathway, which are rare at diagnosis but frequent in relapsed neuroblastoma. A genome-scale CRISPR-Cas9 functional genomic screen was deployed to identify genes that when knocked out sensitize RAS-mutant neuroblastoma to MEK inhibition. Loss of either CCNC or CDK8, two members of the mediator kinase module, sensitized neuroblastoma to MEK inhibition. Furthermore, small-molecule kinase inhibitors of CDK8 improved response to MEK inhibitors in vitro and in vivo in RAS-mutant neuroblastoma and other adult solid tumors. Transcriptional profiling revealed that loss of CDK8 or CCNC antagonized the transcriptional signature induced by MEK inhibition. When combined, loss of CDK8 or CCNC prevented the compensatory upregulation of progrowth gene expression induced by MEK inhibition. These findings propose a new therapeutic combination for RAS-mutant neuroblastoma and may have clinical relevance for other RAS-driven malignancies. SIGNIFICANCE: Transcriptional adaptation to MEK inhibition is mediated by CDK8 and can be blocked by the addition of CDK8 inhibitors to improve response to MEK inhibitors in RAS-mutant neuroblastoma, a clinically challenging disease.


Neoplasm Recurrence, Local , Neuroblastoma , Adult , Humans , Cell Line, Tumor , Neoplasm Recurrence, Local/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Neuroblastoma/pathology , Mutation , Mitogen-Activated Protein Kinase Kinases , Cyclin-Dependent Kinase 8/genetics
7.
Cancer Discov ; 12(12): 2880-2905, 2022 12 02.
Article En | MEDLINE | ID: mdl-36305736

Diffuse midline gliomas are uniformly fatal pediatric central nervous system cancers that are refractory to standard-of-care therapeutic modalities. The primary genetic drivers are a set of recurrent amino acid substitutions in genes encoding histone H3 (H3K27M), which are currently undruggable. These H3K27M oncohistones perturb normal chromatin architecture, resulting in an aberrant epigenetic landscape. To interrogate for epigenetic dependencies, we performed a CRISPR screen and show that patient-derived H3K27M-glioma neurospheres are dependent on core components of the mammalian BAF (SWI/SNF) chromatin remodeling complex. The BAF complex maintains glioma stem cells in a cycling, oligodendrocyte precursor cell-like state, in which genetic perturbation of the BAF catalytic subunit SMARCA4 (BRG1), as well as pharmacologic suppression, opposes proliferation, promotes progression of differentiation along the astrocytic lineage, and improves overall survival of patient-derived xenograft models. In summary, we demonstrate that therapeutic inhibition of the BAF complex has translational potential for children with H3K27M gliomas. SIGNIFICANCE: Epigenetic dysregulation is at the core of H3K27M-glioma tumorigenesis. Here, we identify the BRG1-BAF complex as a critical regulator of enhancer and transcription factor landscapes, which maintain H3K27M glioma in their progenitor state, precluding glial differentiation, and establish pharmacologic targeting of the BAF complex as a novel treatment strategy for pediatric H3K27M glioma. See related commentary by Beytagh and Weiss, p. 2730. See related article by Mo et al., p. 2906.


Epigenome , Glioma , Animals , Humans , Mutation , Glioma/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Neoplastic Stem Cells/metabolism , Mammals/genetics , Mammals/metabolism , DNA Helicases/genetics , Nuclear Proteins/genetics
8.
Nat Commun ; 13(1): 3778, 2022 06 30.
Article En | MEDLINE | ID: mdl-35773251

PPM1D encodes a serine/threonine phosphatase that regulates numerous pathways including the DNA damage response and p53. Activating mutations and amplification of PPM1D are found across numerous cancer types. GSK2830371 is a potent and selective allosteric inhibitor of PPM1D, but its mechanism of binding and inhibition of catalytic activity are unknown. Here we use computational, biochemical and functional genetic studies to elucidate the molecular basis of GSK2830371 activity. These data confirm that GSK2830371 binds an allosteric site of PPM1D with high affinity. By further incorporating data from hydrogen deuterium exchange mass spectrometry and sedimentation velocity analytical ultracentrifugation, we demonstrate that PPM1D exists in an equilibrium between two conformations that are defined by the movement of the flap domain, which is required for substrate recognition. A hinge region was identified that is critical for switching between the two conformations and was directly implicated in the high-affinity binding of GSK2830371 to PPM1D. We propose that the two conformations represent active and inactive forms of the protein reflected by the position of the flap, and that binding of GSK2830371 shifts the equilibrium to the inactive form. Finally, we found that C-terminal truncating mutations proximal to residue 400 result in destabilization of the protein via loss of a stabilizing N- and C-terminal interaction, consistent with the observation from human genetic data that nearly all PPM1D mutations in cancer are truncating and occur distal to residue 400. Taken together, our findings elucidate the mechanism by which binding of a small molecule to an allosteric site of PPM1D inhibits its activity and provides insights into the biology of PPM1D.


Neoplasms , Protein Phosphatase 2C , Allosteric Site , Aminopyridines/pharmacology , Dipeptides/pharmacology , Humans , Mutation , Neoplasms/drug therapy , Neoplasms/enzymology , Neoplasms/genetics , Protein Conformation , Protein Phosphatase 2C/antagonists & inhibitors , Protein Phosphatase 2C/chemistry , Protein Phosphatase 2C/genetics , Protein Phosphatase 2C/metabolism , Serine/genetics , Serine/metabolism , Structure-Activity Relationship
9.
Mol Cell ; 82(13): 2472-2489.e8, 2022 07 07.
Article En | MEDLINE | ID: mdl-35537449

Disruption of antagonism between SWI/SNF chromatin remodelers and polycomb repressor complexes drives the formation of numerous cancer types. Recently, an inhibitor of the polycomb protein EZH2 was approved for the treatment of a sarcoma mutant in the SWI/SNF subunit SMARCB1, but resistance occurs. Here, we performed CRISPR screens in SMARCB1-mutant rhabdoid tumor cells to identify genetic contributors to SWI/SNF-polycomb antagonism and potential resistance mechanisms. We found that loss of the H3K36 methyltransferase NSD1 caused resistance to EZH2 inhibition. We show that NSD1 antagonizes polycomb via cooperation with SWI/SNF and identify co-occurrence of NSD1 inactivation in SWI/SNF-defective cancers, indicating in vivo relevance. We demonstrate that H3K36me2 itself has an essential role in the activation of polycomb target genes as inhibition of the H3K36me2 demethylase KDM2A restores the efficacy of EZH2 inhibition in SWI/SNF-deficient cells lacking NSD1. Together our data expand the mechanistic understanding of SWI/SNF and polycomb interplay and identify NSD1 as the key for coordinating this transcriptional control.


Enhancer of Zeste Homolog 2 Protein , F-Box Proteins , Histone-Lysine N-Methyltransferase , Jumonji Domain-Containing Histone Demethylases , Polycomb-Group Proteins , SMARCB1 Protein , Chromatin/genetics , Chromatin/metabolism , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , F-Box Proteins/genetics , F-Box Proteins/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/genetics , Histones/metabolism , Humans , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism , Rhabdoid Tumor/genetics , Rhabdoid Tumor/metabolism , Rhabdoid Tumor/pathology , SMARCB1 Protein/genetics , SMARCB1 Protein/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Activation/genetics , Tumor Cells, Cultured/metabolism
10.
Nat Cancer ; 3(6): 681-695, 2022 06.
Article En | MEDLINE | ID: mdl-35437317

Despite advances in precision medicine, the clinical prospects for patients with ovarian and uterine cancers have not substantially improved. Here, we analyzed genome-scale CRISPR-Cas9 loss-of-function screens across 851 human cancer cell lines and found that frequent overexpression of SLC34A2-encoding a phosphate importer-is correlated with sensitivity to loss of the phosphate exporter XPR1, both in vitro and in vivo. In patient-derived tumor samples, we observed frequent PAX8-dependent overexpression of SLC34A2, XPR1 copy number amplifications and XPR1 messenger RNA overexpression. Mechanistically, in SLC34A2-high cancer cell lines, genetic or pharmacologic inhibition of XPR1-dependent phosphate efflux leads to the toxic accumulation of intracellular phosphate. Finally, we show that XPR1 requires the novel partner protein KIDINS220 for proper cellular localization and activity, and that disruption of this protein complex results in acidic "vacuolar" structures preceding cell death. These data point to the XPR1-KIDINS220 complex and phosphate dysregulation as a therapeutic vulnerability in ovarian cancer.


Membrane Proteins , Nerve Tissue Proteins , Ovarian Neoplasms , Female , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Phosphates/pharmacology , Receptors, G-Protein-Coupled/genetics , Receptors, Virus/genetics , Xenotropic and Polytropic Retrovirus Receptor/genetics , Xenotropic and Polytropic Retrovirus Receptor/metabolism
11.
Mol Biol Cell ; 33(6): ar49, 2022 05 15.
Article En | MEDLINE | ID: mdl-35353015

Most variants in most genes across most organisms have an unknown impact on the function of the corresponding gene. This gap in knowledge is especially acute in cancer, where clinical sequencing of tumors now routinely reveals patient-specific variants whose functional impact on the corresponding genes is unknown, impeding clinical utility. Transcriptional profiling was able to systematically distinguish these variants of unknown significance as impactful vs. neutral in an approach called expression-based variant-impact phenotyping. We profiled a set of lung adenocarcinoma-associated somatic variants using Cell Painting, a morphological profiling assay that captures features of cells based on microscopy using six stains of cell and organelle components. Using deep-learning-extracted features from each cell's image, we found that cell morphological profiling (cmVIP) can predict variants' functional impact and, particularly at the single-cell level, reveals biological insights into variants that can be explored at our public online portal. Given its low cost, convenient implementation, and single-cell resolution, cmVIP profiling therefore seems promising as an avenue for using non-gene specific assays to systematically assess the impact of variants, including disease-associated alleles, on gene function.


Adenocarcinoma of Lung , Lung Neoplasms , Adenocarcinoma of Lung/genetics , Alleles , Humans , Lung Neoplasms/genetics , Microscopy , Phenotype
12.
Nat Chem Biol ; 18(6): 615-624, 2022 06.
Article En | MEDLINE | ID: mdl-35332332

The ability to understand and predict variable responses to therapeutic agents may improve outcomes in patients with cancer. We hypothesized that the basal gene-transcription state of cancer cell lines, coupled with cell viability profiles of small molecules, might be leveraged to nominate specific mechanisms of intrinsic resistance and to predict drug combinations that overcome resistance. We analyzed 564,424 sensitivity profiles to identify candidate gene-compound pairs, and validated nine such relationships. We determined the mechanism of a novel relationship, in which expression of the serine hydrolase enzymes monoacylglycerol lipase (MGLL) or carboxylesterase 1 (CES1) confers resistance to the histone lysine demethylase inhibitor GSK-J4 by direct enzymatic modification. Insensitive cell lines could be sensitized to GSK-J4 by inhibition or gene knockout. These analytical and mechanistic studies highlight the potential of integrating gene-expression features with small-molecule response to identify patient populations that are likely to benefit from treatment, to nominate rational candidates for combinations and to provide insights into mechanisms of action.


Histone Demethylases , Monoacylglycerol Lipases , Biomarkers , Cell Survival , Drug Combinations , Histone Demethylases/metabolism , Humans
13.
Nat Commun ; 13(1): 604, 2022 02 01.
Article En | MEDLINE | ID: mdl-35105861

The role of PPM1D mutations in de novo gliomagenesis has not been systematically explored. Here we analyze whole genome sequences of 170 pediatric high-grade gliomas and find that truncating mutations in PPM1D that increase the stability of its phosphatase are clonal driver events in 11% of Diffuse Midline Gliomas (DMGs) and are enriched in primary pontine tumors. Through the development of DMG mouse models, we show that PPM1D mutations potentiate gliomagenesis and that PPM1D phosphatase activity is required for in vivo oncogenesis. Finally, we apply integrative phosphoproteomic and functional genomics assays and find that oncogenic effects of PPM1D truncation converge on regulators of cell cycle, DNA damage response, and p53 pathways, revealing therapeutic vulnerabilities including MDM2 inhibition.


Glioma/genetics , Mutation , Oncogenes/genetics , Protein Phosphatase 2C/genetics , Adolescent , Adult , Animals , Brain Stem Neoplasms/genetics , Carcinogenesis/genetics , Cell Cycle , Child , Child, Preschool , DNA Damage , Disease Models, Animal , Female , HEK293 Cells , Humans , Infant , Male , Mice , Proto-Oncogene Proteins c-mdm2 , Transcriptome , Tumor Suppressor Protein p53/genetics , Young Adult
14.
Cancer Discov ; 12(2): 432-449, 2022 02.
Article En | MEDLINE | ID: mdl-34531254

CRISPR-Cas9-based genetic screens have successfully identified cell type-dependent liabilities in cancer, including acute myeloid leukemia (AML), a devastating hematologic malignancy with poor overall survival. Because most of these screens have been performed in vitro using established cell lines, evaluating the physiologic relevance of these targets is critical. We have established a CRISPR screening approach using orthotopic xenograft models to validate and prioritize AML-enriched dependencies in vivo, including in CRISPR-competent AML patient-derived xenograft (PDX) models tractable for genome editing. Our integrated pipeline has revealed several targets with translational value, including SLC5A3 as a metabolic vulnerability for AML addicted to exogenous myo-inositol and MARCH5 as a critical guardian to prevent apoptosis in AML. MARCH5 repression enhanced the efficacy of BCL2 inhibitors such as venetoclax, further highlighting the clinical potential of targeting MARCH5 in AML. Our study provides a valuable strategy for discovery and prioritization of new candidate AML therapeutic targets. SIGNIFICANCE: There is an unmet need to improve the clinical outcome of AML. We developed an integrated in vivo screening approach to prioritize and validate AML dependencies with high translational potential. We identified SLC5A3 as a metabolic vulnerability and MARCH5 as a critical apoptosis regulator in AML, both of which represent novel therapeutic opportunities.This article is highlighted in the In This Issue feature, p. 275.


Antineoplastic Agents/therapeutic use , CRISPR-Cas Systems , Leukemia, Myeloid, Acute/drug therapy , Precision Medicine , Xenograft Model Antitumor Assays , Animals , Humans , Leukemia, Myeloid, Acute/genetics
15.
Nat Commun ; 12(1): 4789, 2021 08 09.
Article En | MEDLINE | ID: mdl-34373451

CRISPR-based cancer dependency maps are accelerating advances in cancer precision medicine, but adequate functional maps are limited to the most common oncogenes. To identify opportunities for therapeutic intervention in other rarer subsets of cancer, we investigate the oncogene-specific dependencies conferred by the lung cancer oncogene, RIT1. Here, genome-wide CRISPR screening in KRAS, EGFR, and RIT1-mutant isogenic lung cancer cells identifies shared and unique vulnerabilities of each oncogene. Combining this genetic data with small-molecule sensitivity profiling, we identify a unique vulnerability of RIT1-mutant cells to loss of spindle assembly checkpoint regulators. Oncogenic RIT1M90I weakens the spindle assembly checkpoint and perturbs mitotic timing, resulting in sensitivity to Aurora A inhibition. In addition, we observe synergy between mutant RIT1 and activation of YAP1 in multiple models and frequent nuclear overexpression of YAP1 in human primary RIT1-mutant lung tumors. These results provide a genome-wide atlas of oncogenic RIT1 functional interactions and identify components of the RAS pathway, spindle assembly checkpoint, and Hippo/YAP1 network as candidate therapeutic targets in RIT1-mutant lung cancer.


Lung Neoplasms/genetics , Oncogenes/genetics , Adaptor Proteins, Signal Transducing/genetics , Animals , Cell Cycle/genetics , Cell Line, Tumor , ErbB Receptors/genetics , Female , Gene Knockout Techniques , High-Throughput Screening Assays , Humans , Lung Neoplasms/drug therapy , Male , Mice , Molecular Targeted Therapy , Mutation , NIH 3T3 Cells , Proto-Oncogene Proteins p21(ras)/genetics , Transcription Factors/genetics , Xenograft Model Antitumor Assays , YAP-Signaling Proteins , ras Proteins
17.
Nat Commun ; 12(1): 4375, 2021 07 16.
Article En | MEDLINE | ID: mdl-34272366

DNMDP and related compounds, or velcrins, induce complex formation between the phosphodiesterase PDE3A and the SLFN12 protein, leading to a cytotoxic response in cancer cells that express elevated levels of both proteins. The mechanisms by which velcrins induce complex formation, and how the PDE3A-SLFN12 complex causes cancer cell death, are not fully understood. Here, we show that PDE3A and SLFN12 form a heterotetramer stabilized by binding of DNMDP. Interactions between the C-terminal alpha helix of SLFN12 and residues near the active site of PDE3A are required for complex formation, and are further stabilized by interactions between SLFN12 and DNMDP. Moreover, we demonstrate that SLFN12 is an RNase, that PDE3A binding increases SLFN12 RNase activity, and that SLFN12 RNase activity is required for DNMDP response. This new mechanistic understanding will facilitate development of velcrin compounds into new cancer therapies.


Cyclic Nucleotide Phosphodiesterases, Type 3/chemistry , Intracellular Signaling Peptides and Proteins/chemistry , Pyridazines/chemistry , Adenosine Monophosphate/chemistry , Calorimetry, Differential Scanning , Catalytic Domain , Cell Survival/drug effects , Cell Survival/genetics , Cryoelectron Microscopy , Cyclic Nucleotide Phosphodiesterases, Type 3/genetics , Endoribonucleases/chemistry , HEK293 Cells , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Kinetics , Mass Spectrometry , Multienzyme Complexes/ultrastructure , Mutation , Protein Binding , Protein Conformation, alpha-Helical , Protein Multimerization , Pyridazines/pharmacology , Recombinant Proteins , Tetrahydroisoquinolines/chemistry
18.
Cancer Cell ; 39(9): 1262-1278.e7, 2021 09 13.
Article En | MEDLINE | ID: mdl-34329586

Fusion-transcription factors (fusion-TFs) represent a class of driver oncoproteins that are difficult to therapeutically target. Recently, protein degradation has emerged as a strategy to target these challenging oncoproteins. The mechanisms that regulate fusion-TF stability, however, are generally unknown. Using CRISPR-Cas9 screening, we discovered tripartite motif-containing 8 (TRIM8) as an E3 ubiquitin ligase that ubiquitinates and degrades EWS/FLI, a driver fusion-TF in Ewing sarcoma. Moreover, we identified TRIM8 as a selective dependency in Ewing sarcoma compared with >700 other cancer cell lines. Mechanistically, TRIM8 knockout led to an increase in EWS/FLI protein levels that was not tolerated. EWS/FLI acts as a neomorphic substrate for TRIM8, defining the selective nature of the dependency. Our results demonstrate that fusion-TF protein stability is tightly regulated and highlight fusion oncoprotein-specific regulators as selective therapeutic targets. This study provides a tractable strategy to therapeutically exploit oncogene overdose in Ewing sarcoma and potentially other fusion-TF-driven cancers.


Bone Neoplasms/mortality , Carrier Proteins/metabolism , Nerve Tissue Proteins/metabolism , Oncogene Proteins, Fusion/chemistry , Proto-Oncogene Protein c-fli-1/chemistry , Proto-Oncogene Protein c-fli-1/metabolism , RNA-Binding Protein EWS/chemistry , RNA-Binding Protein EWS/metabolism , Sarcoma, Ewing/mortality , Bone Neoplasms/metabolism , Carrier Proteins/genetics , Cell Line, Tumor , Cell Proliferation , Cell Survival , Gene Knockout Techniques , HEK293 Cells , Humans , Microfilament Proteins/metabolism , Nerve Tissue Proteins/genetics , Oncogene Proteins, Fusion/metabolism , Protein Stability , Proteolysis , Sarcoma, Ewing/metabolism , Trans-Activators/metabolism
19.
Mol Biol Cell ; 32(9): 995-1005, 2021 04 19.
Article En | MEDLINE | ID: mdl-33534641

Genetic and chemical perturbations impact diverse cellular phenotypes, including multiple indicators of cell health. These readouts reveal toxicity and antitumorigenic effects relevant to drug discovery and personalized medicine. We developed two customized microscopy assays, one using four targeted reagents and the other three targeted reagents, to collectively measure 70 specific cell health phenotypes including proliferation, apoptosis, reactive oxygen species, DNA damage, and cell cycle stage. We then tested an approach to predict multiple cell health phenotypes using Cell Painting, an inexpensive and scalable image-based morphology assay. In matched CRISPR perturbations of three cancer cell lines, we collected both Cell Painting and cell health data. We found that simple machine learning algorithms can predict many cell health readouts directly from Cell Painting images, at less than half the cost. We hypothesized that these models can be applied to accurately predict cell health assay outcomes for any future or existing Cell Painting dataset. For Cell Painting images from a set of 1500+ compound perturbations across multiple doses, we validated predictions by orthogonal assay readouts. We provide a web app to browse predictions: http://broad.io/cell-health-app. Our approach can be used to add cell health annotations to Cell Painting datasets.


Cells/cytology , Forecasting/methods , Image Processing, Computer-Assisted/methods , Algorithms , Biological Assay , Cell Line , Humans , Machine Learning , Microscopy , Phenotype
20.
Mol Cancer Res ; 19(6): 1015-1025, 2021 06.
Article En | MEDLINE | ID: mdl-33619228

FANCJ (BRIP1/BACH1) is a hereditary breast and ovarian cancer (HBOC) gene encoding a DNA helicase. Similar to HBOC genes, BRCA1 and BRCA2, FANCJ is critical for processing DNA inter-strand crosslinks (ICL) induced by chemotherapeutics, such as cisplatin. Consequently, cells deficient in FANCJ or its catalytic activity are sensitive to ICL-inducing agents. Unfortunately, the majority of FANCJ clinical mutations remain uncharacterized, limiting therapeutic opportunities to effectively use cisplatin to treat tumors with mutated FANCJ. Here, we sought to perform a comprehensive screen to identify FANCJ loss-of-function (LOF) mutations. We developed a FANCJ lentivirus mutation library representing approximately 450 patient-derived FANCJ nonsense and missense mutations to introduce FANCJ mutants into FANCJ knockout (K/O) HeLa cells. We performed a high-throughput screen to identify FANCJ LOF mutants that, as compared with wild-type FANCJ, fail to robustly restore resistance to ICL-inducing agents, cisplatin or mitomycin C (MMC). On the basis of the failure to confer resistance to either cisplatin or MMC, we identified 26 missense and 25 nonsense LOF mutations. Nonsense mutations elucidated a relationship between location of truncation and ICL sensitivity, as the majority of nonsense mutations before amino acid 860 confer ICL sensitivity. Further validation of a subset of LOF mutations confirmed the ability of the screen to identify FANCJ mutations unable to confer ICL resistance. Finally, mapping the location of LOF mutations to a new homology model provides additional functional information. IMPLICATIONS: We identify 51 FANCJ LOF mutations, providing important classification of FANCJ mutations that will afford additional therapeutic strategies for affected patients.


BRCA1 Protein/genetics , DNA Helicases/genetics , DNA Mutational Analysis/methods , Fanconi Anemia Complementation Group Proteins/genetics , Mutation/genetics , Neoplasms/genetics , RNA Helicases/genetics , Cell Line, Tumor , Cisplatin/pharmacology , Codon, Nonsense , Cross-Linking Reagents/pharmacology , Gene Knockout Techniques , HeLa Cells , Humans , Loss of Function Mutation , Mitomycin/pharmacology , Mutation/drug effects , Mutation, Missense , Neoplasms/pathology
...