Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Sci Adv ; 8(41): eabn7738, 2022 10 14.
Article En | MEDLINE | ID: mdl-36240280

Decades of structure-function studies have established our current extensive understanding of enzymes. However, traditional structural models are snapshots of broader conformational ensembles of interchanging states. We demonstrate the need for conformational ensembles to understand function, using the enzyme ketosteroid isomerase (KSI) as an example. Comparison of prior KSI cryogenic x-ray structures suggested deleterious mutational effects from a misaligned oxyanion hole catalytic residue. However, ensemble information from room-temperature x-ray crystallography, combined with functional studies, excluded this model. Ensemble-function analyses can deconvolute effects from altering the probability of occupying a state (P-effects) and changing the reactivity of each state (k-effects); our ensemble-function analyses revealed functional effects arising from weakened oxyanion hole hydrogen bonding and substrate repositioning within the active site. Ensemble-function studies will have an integral role in understanding enzymes and in meeting the future goals of a predictive understanding of enzyme catalysis and engineering new enzymes.


Steroid Isomerases , Catalysis , Crystallography, X-Ray , Hydrogen Bonding , Isomerases , Ketosteroids/chemistry , Steroid Isomerases/chemistry , Steroid Isomerases/genetics
2.
Science ; 371(6533)2021 03 05.
Article En | MEDLINE | ID: mdl-33674467

The mechanisms that underly the adaptation of enzyme activities and stabilities to temperature are fundamental to our understanding of molecular evolution and how enzymes work. Here, we investigate the molecular and evolutionary mechanisms of enzyme temperature adaption, combining deep mechanistic studies with comprehensive sequence analyses of thousands of enzymes. We show that temperature adaptation in ketosteroid isomerase (KSI) arises primarily from one residue change with limited, local epistasis, and we establish the underlying physical mechanisms. This residue change occurs in diverse KSI backgrounds, suggesting parallel adaptation to temperature. We identify residues associated with organismal growth temperature across 1005 diverse bacterial enzyme families, suggesting widespread parallel adaptation to temperature. We assess the residue properties, molecular interactions, and interaction networks that appear to underly temperature adaptation.


Adaptation, Physiological , Bacterial Proteins/chemistry , Evolution, Molecular , Steroid Isomerases/chemistry , Amino Acid Substitution , Bacterial Proteins/genetics , Enzyme Stability , Mutation , Steroid Isomerases/genetics , Temperature
3.
Proc Natl Acad Sci U S A ; 117(52): 33204-33215, 2020 12 29.
Article En | MEDLINE | ID: mdl-33376217

How enzymes achieve their enormous rate enhancements remains a central question in biology, and our understanding to date has impacted drug development, influenced enzyme design, and deepened our appreciation of evolutionary processes. While enzymes position catalytic and reactant groups in active sites, physics requires that atoms undergo constant motion. Numerous proposals have invoked positioning or motions as central for enzyme function, but a scarcity of experimental data has limited our understanding of positioning and motion, their relative importance, and their changes through the enzyme's reaction cycle. To examine positioning and motions and test catalytic proposals, we collected "room temperature" X-ray crystallography data for Pseudomonas putida ketosteroid isomerase (KSI), and we obtained conformational ensembles for this and a homologous KSI from multiple PDB crystal structures. Ensemble analyses indicated limited change through KSI's reaction cycle. Active site positioning was on the 1- to 1.5-Å scale, and was not exceptional compared to noncatalytic groups. The KSI ensembles provided evidence against catalytic proposals invoking oxyanion hole geometric discrimination between the ground state and transition state or highly precise general base positioning. Instead, increasing or decreasing positioning of KSI's general base reduced catalysis, suggesting optimized Ångstrom-scale conformational heterogeneity that allows KSI to efficiently catalyze multiple reaction steps. Ensemble analyses of surrounding groups for WT and mutant KSIs provided insights into the forces and interactions that allow and limit active-site motions. Most generally, this ensemble perspective extends traditional structure-function relationships, providing the basis for a new era of "ensemble-function" interrogation of enzymes.


Bacterial Proteins/chemistry , Catalytic Domain , Steroid Isomerases/chemistry , Bacterial Proteins/metabolism , Crystallography, X-Ray , Kinetics , Molecular Dynamics Simulation , Pseudomonas putida/enzymology , Steroid Isomerases/metabolism
4.
Free Radic Biol Med ; 141: 475-482, 2019 09.
Article En | MEDLINE | ID: mdl-31349038

Chronic inflammatory disorders are associated with biomolecular damage attributed partly to reactions with Reactive Oxygen Species (ROS), particularly hydroxyl radicals (•OH). However, the impacts of serum electrolytes on ROS-associated damage has received little attention. We demonstrate that the conversion of •OH to carbonate and halogen radicals via reactions with serum-relevant carbonate and halide concentrations fundamentally alters the targeting of amino acids and loss of enzymatic activity in catalase, albumin and carbonic anhydrase, three important blood proteins. Chemical kinetic modeling indicated that carbonate and halogen radical concentrations should exceed •OH concentrations by 6 and 2 orders of magnitude, respectively. Steady-state γ-radiolysis experiments demonstrated that serum-level carbonates and halides increased tyrosine, tryptophan and enzymatic activity losses in catalase up to 6-fold. These outcomes were specific to carbonates and halides, not general ionic strength effects. Serum carbonates and halides increased the degradation of tyrosines and methionines in albumin, and increased the degradation of histidines while decreasing enzymatic activity loss in carbonic anhydrase. Serum electrolytes increased the degradation of tyrosines, tryptophans and enzymatic activity in the model enzyme, ketosteroid isomerase, predominantly due to carbonate radical reactions. Treatment of a mutant ketosteroid isomerase indicated that preferential targeting of the active site tyrosine accounted for half of the total tyrosine loss. The results suggest that carbonate and halogen radicals may be more significant than •OH as drivers for protein degradation in serum. Accounting for the selective targeting of biomolecules by these daughter radicals is important for developing a mechanistic understanding of the consequences of oxidative stress.


Electrolytes/toxicity , Free Radicals/toxicity , Hydroxyl Radical/toxicity , Inflammation/blood , Carbonates/toxicity , Catalase/genetics , Halogens/toxicity , Humans , Inflammation/chemically induced , Inflammation/genetics , Inflammation/pathology , Kinetics , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Proteolysis/drug effects , Reactive Oxygen Species/metabolism , Water Pollutants, Chemical
5.
J Am Chem Soc ; 140(31): 9827-9843, 2018 08 08.
Article En | MEDLINE | ID: mdl-29990421

Hydrogen bonds are fundamental to biological systems and are regularly found in networks implicated in folding, molecular recognition, catalysis, and allostery. Given their ubiquity, we asked the fundamental questions of whether, and to what extent, hydrogen bonds within networks are structurally coupled. To address these questions, we turned to three protein systems, two variants of ketosteroid isomerase and one of photoactive yellow protein. We perturbed their hydrogen bond networks via a combination of site-directed mutagenesis and unnatural amino acid substitution, and we used 1H NMR and high-resolution X-ray crystallography to determine the effects of these perturbations on the lengths of the two oxyanion hole hydrogen bonds that are donated to negatively charged transition state analogs. Perturbations that lengthened or shortened one of the oxyanion hole hydrogen bonds had the opposite effect on the other. The oxyanion hole hydrogen bonds were also affected by distal hydrogen bonds in the network, with smaller perturbations for more remote hydrogen bonds. Across 19 measurements in three systems, the length change in one oxyanion hole hydrogen bond was propagated to the other, by a factor of -0.30 ± 0.03. This common effect suggests that hydrogen bond coupling is minimally influenced by the remaining protein scaffold. The observed coupling is reproduced by molecular mechanics and quantum mechanics/molecular mechanics (QM/MM) calculations for changes to a proximal oxyanion hole hydrogen bond. However, effects from distal hydrogen bonds are reproduced only by QM/MM, suggesting the importance of polarization in hydrogen bond coupling. These results deepen our understanding of hydrogen bonds and their networks, providing strong evidence for long-range coupling and for the extent of this coupling. We provide a broadly predictive quantitative relationship that can be applied to and can be further tested in new systems.


Bacterial Proteins/chemistry , Ketosteroids/chemistry , Photoreceptors, Microbial/chemistry , Steroid Isomerases/chemistry , Catalytic Domain , Crystallography, X-Ray , Hydrogen Bonding , Proton Magnetic Resonance Spectroscopy
6.
Biochemistry ; 57(24): 3338-3352, 2018 06 19.
Article En | MEDLINE | ID: mdl-29678112

Hydrogen bonds play integral roles in biological structure, function, and conformational dynamics and are fundamental to life as it has evolved on Earth. However, our understanding of these fundamental and ubiquitous interactions has seemed fractured and incomplete, and it has been difficult to extract generalities and principles about hydrogen bonds despite thousands of papers published on this topic, perhaps in part because of the expanse of this subject and the density of studies. Fortunately, recent hydrogen bond proposals, discussions, and debates have stimulated new tests and models and have led to a remarkably simple picture of the structure of hydrogen bonds. This knowledge also provides clarity concerning hydrogen bond energetics, limiting and simplifying the factors that need be considered. Herein we recount the advances that have led to this simpler view of hydrogen bond structure, dynamics, and energetics. A quantitative predictive model for hydrogen bond length can now be broadly and deeply applied to evaluate current proposals and to uncover structural features of proteins, their conformational restraints, and their correlated motions. In contrast, a quantitative energetic description of molecular recognition and catalysis by proteins remains an important ongoing challenge, although our improved understanding of hydrogen bonds may aid in testing predictions from current and future models. We close by codifying our current state of understanding into five "Rules for Hydrogen Bonding" that may provide a foundation for understanding and teaching about these vital interactions and for building toward a deeper understanding of hydrogen bond energetics.


Salicylates/chemistry , Thermodynamics , Hydrogen Bonding , Molecular Structure
7.
Inorg Chem ; 53(6): 3153-61, 2014 Mar 17.
Article En | MEDLINE | ID: mdl-24592857

This report describes the thermochemistry, proton-coupled electron transfer (PCET) reactions and self-exchange rate constants for a set of bis-benzimidazolate-ligated [2Fe-2S] clusters. These clusters serve as a model for the chemistry of biological Rieske and mitoNEET clusters. PCET from [Fe2S2((Pr)bbim)((Pr)bbimH)](2-) (4) and [Fe2S2((Pr)bbim)((Pr)bbimH2)](1-) (5) to TEMPO occurs via concerted proton-electron transfer (CPET) mechanisms ((Pr)bbimH2 = 4,4-bis-(benzimidazol-2-yl)heptane). Intermolecular electron transfer (ET) self-exchange between [Fe2S2((Pr)bbim)2](2-) (1) and [Fe2S2((Pr)bbim)2](3-) (2) occurs with a rate constant of (1.20 ± 0.06) × 10(5) M(-1) s(-1) at 26 °C. A similar self-exchange rate constant is found for the related [2Fe-2S] cluster [Fe2S2(SArO)2](2-/3-), SArO(2-) = thiosalicylate. These are roughly an order of magnitude slower than that reported for larger [4Fe-4S] clusters and 1 order of magnitude faster than that reported for N-ligated high-spin iron complexes. These results suggest that the rate of intermolecular ET to/from [Fe-S] clusters is modulated by cluster size. The measured PCET self-exchange rate constant for 1 and 4 at -30 °C is (3.8 ± 0.7) × 10(4) M(-1) s(-1). Analysis of rate constants using the Marcus cross-relation suggests that this process likely occurs via a concerted proton-electron transfer (CPET) mechanism. The implications of these findings to biological systems are also discussed, including the conclusion that histidine-ligated [2Fe-2S] clusters should not have a strong bias to undergo concerted e(-)/H(+) transfers.


Iron-Sulfur Proteins/chemistry , Models, Theoretical , Electron Transport , Proton Magnetic Resonance Spectroscopy , Protons
...