Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Emerg Microbes Infect ; 13(1): 2392659, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39137261

ABSTRACT

Early detection of disseminating vancomycin-resistant Enterococcus faecium (VREfm) in ICU wards is crucial for outbreak identification and the implementation of prompt infection control measures. Genotypic methods like pulsed-field gel electrophoresis (PFGE) and whole-genome sequencing (WGS) are costly and time-consuming, hindering rapid response due to batch dependency. Fourier-transform infrared spectroscopy (FT-IR) offers the potential for real-time outbreak detection and reliable strain typing. We utilized FT-IR to identify clonal VREfm dissemination and compared its performance to PFGE and WGS. Between February through October 2023, an unusually high number of VREfm were recovered at a tertiary hospital in Barcelona. Isolates were examined for antimicrobial susceptibility, carriage of vanA/vanB genes and clonality was also studied using FT-IR, PFGE, and WGS. Routine FT-IR inspections revealed recurring VREfm clustering during the outbreak's initial weeks. In total, 104 isolates were recovered from 75 patients and from multiple wards. However, only one isolate was recovered from an environmental sample, suggesting the absence of environmental reservoirs. An ST80 vancomycin-resistant (vanA) E. faecium strain was the main strain responsible for the outbreak, although a few additional VREfm strains were also identified, all belonging to CC17. PFGE and cgMLST (WGS) yielded identical clustering results to FT-IR, and WGS confirmed vanA/vanB gene carriage in all VREfm isolates. Infection control measures led to a rapid decline in VREfm isolates, with no isolates detected in November. FT-IR spectroscopy offers rapid turnaround times, sensitivity, and reproducibility, comparable to standard typing methods. It proved as an effective tool for monitoring VREfm dissemination and early outbreak detection.


Subject(s)
Cross Infection , Electrophoresis, Gel, Pulsed-Field , Enterococcus faecium , Gram-Positive Bacterial Infections , Vancomycin-Resistant Enterococci , Whole Genome Sequencing , Humans , Enterococcus faecium/genetics , Enterococcus faecium/drug effects , Enterococcus faecium/isolation & purification , Enterococcus faecium/classification , Vancomycin-Resistant Enterococci/genetics , Vancomycin-Resistant Enterococci/isolation & purification , Vancomycin-Resistant Enterococci/drug effects , Vancomycin-Resistant Enterococci/classification , Spectroscopy, Fourier Transform Infrared/methods , Cross Infection/microbiology , Cross Infection/epidemiology , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/epidemiology , Whole Genome Sequencing/methods , Disease Outbreaks , Bacterial Proteins/genetics , Microbial Sensitivity Tests , Spain/epidemiology , Carbon-Oxygen Ligases/genetics , Anti-Bacterial Agents/pharmacology
2.
Eur J Microbiol Immunol (Bp) ; 14(2): 210-218, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38483509

ABSTRACT

Acinetobacter spp. are often isolated from natural sources, but knowledge about their presence in wild animals is fragmented and uncomplete. The present study aimed to characterize a series of Acinetobacter radioresistens isolated from Humboldt penguins (Spheniscus humboldti). Fifteen Humboldt penguins from an inhabited northern Peruvian island were sampled. Microorganisms were identified by MALDI-TOF MS. Antibiotic susceptibility to 12 antimicrobial agents was established, and clonal relationships were determined. A representative isolate was selected for whole genome sequencing (WGS). A. radioresistens were isolated from the feces of 12 (80%) Humboldt penguins, being susceptible to all the antimicrobial agents tested, except eight cefotaxime-intermediate isolates. All A. radioresistens were clonally related. WGS showed that the isolate belonged to ST1972, the presence of two chromosomal encoded carbapenemases (blaOXA-23 and a putative subclass B3 metallo-ß-lactamase), and a series of point mutations in antibiotic-resistance related chromosomal genes, which were considered as polymorphisms. In addition, a few virulence factors, including a capsule-encoding operon, superoxide dismutases, catalases, phospholipases and a siderophore receptor were identified. The present results suggest that A. radioresistens may be a common member of the gut microbiota of Humboldt penguins, but further studies in other geographical areas are needed to establish this finding.

SELECTION OF CITATIONS
SEARCH DETAIL