Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Cancers (Basel) ; 13(10)2021 May 14.
Article in English | MEDLINE | ID: mdl-34069226

ABSTRACT

Promising strategies for maximizing IgG effector functions rely on the introduction of natural and non-immunogenic modifications. The Fc domain of IgG antibodies contains an N-linked oligosaccharide at position 297. Human IgG antibodies lacking the core fucose in this glycan have enhanced binding to human (FcγR) IIIa/b, resulting in enhanced antibody dependent cell cytotoxicity and phagocytosis through these receptors. However, it is not yet clear if glycan-enhancing modifications of human IgG translate into more effective treatment in mouse models. We generated humanized hIgG1-TA99 antibodies with and without core-fucose. C57Bl/6 mice that were injected intraperitoneally with B16F10-gp75 mouse melanoma developed significantly less metastasis outgrowth after treatment with afucosylated hIgG1-TA99 compared to mice treated with wildtype hhIgG1-TA99. Afucosylated human IgG1 showed stronger interaction with the murine FcγRIV, the mouse orthologue of human FcγRIIIa, indicating that this glycan change is functionally conserved between the species. In agreement with this, no significant differences were observed in tumor outgrowth in FcγRIV-/- mice treated with human hIgG1-TA99 with or without the core fucose. These results confirm the potential of using afucosylated therapeutic IgG to increase their efficacy. Moreover, we show that afucosylated human IgG1 antibodies act across species, supporting that mouse models can be suitable to test afucosylated antibodies.

3.
Immunity ; 54(1): 132-150.e9, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33271119

ABSTRACT

HLA class I (HLA-I) glycoproteins drive immune responses by presenting antigens to cognate CD8+ T cells. This process is often hijacked by tumors and pathogens for immune evasion. Because options for restoring HLA-I antigen presentation are limited, we aimed to identify druggable HLA-I pathway targets. Using iterative genome-wide screens, we uncovered that the cell surface glycosphingolipid (GSL) repertoire determines effective HLA-I antigen presentation. We show that absence of the protease SPPL3 augmented B3GNT5 enzyme activity, resulting in upregulation of surface neolacto-series GSLs. These GSLs sterically impeded antibody and receptor interactions with HLA-I and diminished CD8+ T cell activation. Furthermore, a disturbed SPPL3-B3GNT5 pathway in glioma correlated with decreased patient survival. We show that the immunomodulatory effect could be reversed through GSL synthesis inhibition using clinically approved drugs. Overall, our study identifies a GSL signature that inhibits immune recognition and represents a potential therapeutic target in cancer, infection, and autoimmunity.


Subject(s)
Aspartic Acid Endopeptidases/metabolism , CD8-Positive T-Lymphocytes/immunology , Glioma/immunology , Glycosphingolipids/metabolism , Glycosyltransferases/metabolism , HLA Antigens/metabolism , Histocompatibility Antigens Class I/metabolism , Immunotherapy/methods , Antigen Presentation , Aspartic Acid Endopeptidases/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Glioma/mortality , Glycosphingolipids/immunology , HLA Antigens/immunology , Histocompatibility Antigens Class I/immunology , Humans , Lymphocyte Activation , Signal Transduction , Survival Analysis , Tumor Escape
4.
Sci Adv ; 6(8): eaax0301, 2020 02.
Article in English | MEDLINE | ID: mdl-32128391

ABSTRACT

Effector functions of immunoglobulin G (IgG) are regulated by the composition of a glycan moiety, thus affecting activity of the immune system. Aberrant glycosylation of IgG has been observed in many diseases, but little is understood about the underlying mechanisms. We performed a genome-wide association study of IgG N-glycosylation (N = 8090) and, using a data-driven network approach, suggested how associated loci form a functional network. We confirmed in vitro that knockdown of IKZF1 decreases the expression of fucosyltransferase FUT8, resulting in increased levels of fucosylated glycans, and suggest that RUNX1 and RUNX3, together with SMARCB1, regulate expression of glycosyltransferase MGAT3. We also show that variants affecting the expression of genes involved in the regulation of glycoenzymes colocalize with variants affecting risk for inflammatory diseases. This study provides new evidence that variation in key transcription factors coupled with regulatory variation in glycogenes modifies IgG glycosylation and has influence on inflammatory diseases.


Subject(s)
Gene Expression Regulation , Immunoglobulin G/metabolism , Inflammation/genetics , Inflammation/metabolism , Algorithms , Alleles , Computational Biology/methods , Genetic Loci , Genome-Wide Association Study , Glycosylation , Humans , Immunoglobulin G/immunology , Linkage Disequilibrium , Models, Genetic , Phenotype , Polymorphism, Single Nucleotide , Polysaccharides/metabolism
5.
Front Immunol ; 9: 2436, 2018.
Article in English | MEDLINE | ID: mdl-30405629

ABSTRACT

The N-glycosylation of immunoglobulin (Ig) G, the major antibody in the circulation of human adults, is well known for its influence on antibody effector functions and its alterations with various diseases. In contrast, knowledge on the role of glycans attached to IgA, which is a key immune defense agent in secretions, is very scarce. In this study we aimed to characterize the glycosylation of salivary (secretory) IgA, including the IgA joining chain (JC), and secretory component (SC) and to compare IgA and IgG glycosylation between human plasma and saliva samples to gain a first insight into oral cavity-specific antibody glycosylation. Plasma and whole saliva were collected from 19 healthy volunteers within a 2-h time window. IgG and IgA were affinity-purified from the two biofluids, followed by tryptic digestion and nanoLC-ESI-QTOF-MS(/MS) analysis. Saliva-derived IgG exhibited a slightly lower galactosylation and sialylation as compared to plasma-derived IgG. Glycosylation of IgA1, IgA2, and the JC showed substantial differences between the biofluids, with salivary proteins exhibiting a higher bisection, and lower galactosylation and sialylation as compared to plasma-derived IgA and JC. Additionally, all seven N-glycosylation sites, characterized on the SC of secretory IgA in saliva, carried highly fucosylated and fully galactosylated diantennary N-glycans. This study lays the basis for future research into the functional role of salivary Ig glycosylation as well as its biomarker potential.


Subject(s)
Blood Proteins/metabolism , Glycomics , Immunoglobulin A/metabolism , Immunoglobulin G/metabolism , Immunologic Tests/methods , Saliva/metabolism , Adult , Biomarkers/metabolism , Blood Proteins/chemistry , Female , Glycosylation , Healthy Volunteers , Humans , Immunoglobulin A/chemistry , Immunoglobulin G/chemistry , Male , Young Adult
6.
Front Immunol ; 9: 277, 2018.
Article in English | MEDLINE | ID: mdl-29535710

ABSTRACT

Immunoglobulin G (IgG), a glycoprotein secreted by plasma B-cells, plays a major role in the human adaptive immune response and are associated with a wide range of diseases. Glycosylation of the Fc binding region of IgGs, responsible for the antibody's effector function, is essential for prompting a proper immune response. This study focuses on the general genetic impact on IgG glycosylation as well as corresponding subclass specificities. To identify genetic loci involved in IgG glycosylation, we performed a genome-wide association study (GWAS) on liquid chromatography electrospray mass spectrometry (LC-ESI-MS)-measured IgG glycopeptides of 1,823 individuals in the Cooperative Health Research in the Augsburg Region (KORA F4) study cohort. In addition, we performed GWAS on subclass-specific ratios of IgG glycans to gain power in identifying genetic factors underlying single enzymatic steps in the glycosylation pathways. We replicated our findings in 1,836 individuals from the Leiden Longevity Study (LLS). We were able to show subclass-specific genetic influences on single IgG glycan structures. The replicated results indicate that, in addition to genes encoding for glycosyltransferases (i.e., ST6GAL1, B4GALT1, FUT8, and MGAT3), other genetic loci have strong influences on the IgG glycosylation patterns. A novel locus on chromosome 1, harboring RUNX3, which encodes for a transcription factor of the runt domain-containing family, is associated with decreased galactosylation. Interestingly, members of the RUNX family are cross-regulated, and RUNX3 is involved in both IgA class switching and B-cell maturation as well as T-cell differentiation and apoptosis. Besides the involvement of glycosyltransferases in IgG glycosylation, we suggest that, due to the impact of variants within RUNX3, potentially mechanisms involved in B-cell activation and T-cell differentiation during the immune response as well as cell migration and invasion involve IgG glycosylation.


Subject(s)
Glycosylation , Immunoglobulin G/metabolism , Core Binding Factor Alpha 3 Subunit/genetics , Genome-Wide Association Study , Glycosyltransferases/genetics , Humans
7.
Proc Natl Acad Sci U S A ; 115(8): 1901-1906, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29432186

ABSTRACT

A hallmark of B-cell immunity is the generation of a diverse repertoire of antibodies from a limited set of germline V(D)J genes. This repertoire is usually defined in terms of amino acid composition. However, variable domains may also acquire N-linked glycans, a process conditional on the introduction of consensus amino acid motifs (N-glycosylation sites) during somatic hypermutation. High levels of variable domain glycans have been associated with autoantibodies in rheumatoid arthritis, as well as certain follicular lymphomas. However, the role of these glycans in the humoral immune response remains poorly understood. Interestingly, studies have reported both positive and negative effects on antibody affinity. Our aim was to elucidate the role of variable domain glycans during antigen-specific antibody responses. By analyzing B-cell repertoires by next-generation sequencing, we demonstrate that N-glycosylation sites are introduced at positions in which glycans can affect antigen binding as a result of a specific clustering of progenitor glycosylation sites in the germline sequences of variable domain genes. By analyzing multiple human monoclonal and polyclonal (auto)antibody responses, we subsequently show that this process is subject to selection during antigen-specific antibody responses, skewed toward IgG4, and positively contributes to antigen binding. Together, these results highlight a physiological role for variable domain glycosylation as an additional layer of antibody diversification that modulates antigen binding.


Subject(s)
Immunoglobulin Variable Region/genetics , Antibodies , Antibodies, Monoclonal , Antibody Affinity , Arthritis, Rheumatoid/immunology , Autoantibodies , B-Lymphocytes/metabolism , Glycosylation , Humans , Immunoglobulin G/genetics
8.
Mol Immunol ; 94: 54-60, 2018 02.
Article in English | MEDLINE | ID: mdl-29268168

ABSTRACT

The binding strength between IgG and FcγR is influenced by the composition of the N-linked glycan at position N297 in the Fc-domain of IgG. Particularly, afucosylation increases the binding affinity of human IgG1 to human FcγRIIIa up to ∼20 fold, and additional galactosylation of the afucosylated IgG increases the affinity up to ∼40 fold. The increase in affinity for afucosylated IgG has previously been shown to depend on direct carbohydrate-carbohydrate interactions between the IgG-Fc glycan with an N-linked glycan at position 162 unique to hFcγRIIIa and hFcγRIIIb. Here we report that the N162 glycosylation site is also found in the orthologous mouse FcγR, mFcγRIV. The N162-glycan in mFcγRIV was also responsible for enhancing the binding to mouse IgG with reduced fucose similar to hFcγRIIIa. However, unlike hFcγRIIIa, mFcγRIV did not bind more avidly to IgG with increased galactose and reduced fucose. Overall, these results suggest the N162-glycan in the human FcγRIII family and its orthologous mouse FcγRIV to be functionally conserved.


Subject(s)
Antigen-Antibody Reactions , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Polysaccharides/physiology , Receptors, IgG/metabolism , Animals , Antibody Specificity , Carbohydrate Sequence/physiology , Cells, Cultured , Conserved Sequence , Fucose/metabolism , Glycosylation , Humans , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin G/chemistry , Mice , Polysaccharides/immunology , Receptors, IgG/immunology , Species Specificity
9.
Biochim Biophys Acta Gen Subj ; 1862(3): 637-648, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29055820

ABSTRACT

BACKGROUND: Glycosylation is one of the most common post-translation modifications with large influences on protein structure and function. The effector function of immunoglobulin G (IgG) alters between pro- and anti-inflammatory, based on its glycosylation. IgG glycan synthesis is highly complex and dynamic. METHODS: With the use of two different analytical methods for assessing IgG glycosylation, we aim to elucidate the link between DNA methylation and glycosylation of IgG by means of epigenome-wide association studies. In total, 3000 individuals from 4 cohorts were analyzed. RESULTS: The overlap of the results from the two glycan measurement panels yielded DNA methylation of 7 CpG-sites on 5 genomic locations to be associated with IgG glycosylation: cg25189904 (chr.1, GNG12); cg05951221, cg21566642 and cg01940273 (chr.2, ALPPL2); cg05575921 (chr.5, AHRR); cg06126421 (6p21.33); and cg03636183 (chr.19, F2RL3). Mediation analyses with respect to smoking revealed that the effect of smoking on IgG glycosylation may be at least partially mediated via DNA methylation levels at these 7 CpG-sites. CONCLUSION: Our results suggest the presence of an indirect link between DNA methylation and IgG glycosylation that may in part capture environmental exposures. GENERAL SIGNIFICANCE: An epigenome-wide analysis conducted in four population-based cohorts revealed an association between DNA methylation and IgG glycosylation patterns. Presumably, DNA methylation mediates the effect of smoking on IgG glycosylation.


Subject(s)
DNA Methylation , Immunoglobulin G/chemistry , Protein Processing, Post-Translational , Smoking/adverse effects , Chromosome Mapping , Cohort Studies , CpG Islands , Epigenomics/methods , Europe , Glycosylation , Humans , Immunoglobulin G/metabolism , Multicenter Studies as Topic , Polysaccharides/analysis , Twin Studies as Topic
10.
Sci Rep ; 7(1): 12325, 2017 09 26.
Article in English | MEDLINE | ID: mdl-28951559

ABSTRACT

This study indicates that glycosylation of immunoglobulin G, the most abundant antibody in human blood, may convey useful information with regard to inflammation and metabolic health. IgG occurs in the form of different subclasses, of which the effector functions show significant variation. Our method provides subclass-specific IgG glycosylation profiling, while previous large-scale studies neglected to measure IgG2-specific glycosylation. We analysed the plasma Fc glycosylation profiles of IgG1, IgG2 and IgG4 in a cohort of 1826 individuals by liquid chromatography-mass spectrometry. For all subclasses, a low level of galactosylation and sialylation and a high degree of core fucosylation associated with poor metabolic health, i.e. increased inflammation as assessed by C-reactive protein, low serum high-density lipoprotein cholesterol and high triglycerides, which are all known to indicate increased risk of cardiovascular disease. IgG2 consistently showed weaker associations of its galactosylation and sialylation with the metabolic markers, compared to IgG1 and IgG4, while the direction of the associations were overall similar for the different IgG subclasses. These findings demonstrate the potential of IgG glycosylation as a biomarker for inflammation and metabolic health, and further research is required to determine the additive value of IgG glycosylation on top of biomarkers which are currently used.


Subject(s)
Health Status , Immunoglobulin Fc Fragments/blood , Immunoglobulin G/blood , Inflammation/blood , Adult , Aged , Biomarkers/analysis , Biomarkers/metabolism , Cohort Studies , Female , Glycosylation , Humans , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin G/metabolism , Inflammation/metabolism , Male , Metabolomics/methods , Middle Aged
11.
Front Immunol ; 8: 877, 2017.
Article in English | MEDLINE | ID: mdl-28824618

ABSTRACT

Glycosylation of the immunoglobulin G (IgG)-Fc tail is required for binding to Fc-gamma receptors (FcγRs) and complement-component C1q. A variety of IgG1-glycoforms is detected in human sera. Several groups have found global or antigen-specific skewing of IgG glycosylation, for example in autoimmune diseases, viral infections, and alloimmune reactions. The IgG glycoprofiles seem to correlate with disease outcome. Additionally, IgG-glycan composition contributes significantly to Ig-based therapies, as for example IVIg in autoimmune diseases and therapeutic antibodies for cancer treatment. The effect of the different glycan modifications, especially of fucosylation, has been studied before. However, the contribution of the 20 individual IgG glycoforms, in which the combined effect of all 4 modifications, to the IgG function has never been investigated. Here, we combined six glyco-engineering methods to generate all 20 major human IgG1-glycoforms and screened their functional capacity for FcγR and complement activity. Bisection had no effect on FcγR or C1q-binding, and sialylation had no- or little effect on FcγR binding. We confirmed that hypo-fucosylation of IgG1 increased binding to FcγRIIIa and FcγRIIIb by ~17-fold, but in addition we showed that this effect could be further increased to ~40-fold for FcγRIIIa upon simultaneous hypo-fucosylation and hyper-galactosylation, resulting in enhanced NK cell-mediated antibody-dependent cellular cytotoxicity. Moreover, elevated galactosylation and sialylation significantly increased (independent of fucosylation) C1q-binding, downstream complement deposition, and cytotoxicity. In conclusion, fucosylation and galactosylation are primary mediators of functional changes in IgG for FcγR- and complement-mediated effector functions, respectively, with galactose having an auxiliary role for FcγRIII-mediated functions. This knowledge could be used not only for glycan profiling of clinically important (antigen-specific) IgG but also to optimize therapeutic antibody applications.

12.
Sci Rep ; 7(1): 5324, 2017 07 13.
Article in English | MEDLINE | ID: mdl-28706253

ABSTRACT

Erythropoietin (EPO) is a heavily glycosylated hormone whose recombinant forms are used for treatment of anaemia. EPO glycosylation is important for its pharmacological properties. An analytical workflow, which can determine EPO glycosylation in an accurate and high-throughput fashion from cell culture supernatant (CCS) in approximately 24 h, offers the possibility to follow changes during production. To address this challenge, we present a complete workflow consisting of protein purification, glycan release, sialic acid derivatization, solid phase extraction, matrix-assisted laser desorption/ionization - mass spectrometry (MALDI-MS) analysis and MassyTools data processing. EPO purification from CCS by anti-EPO antibody coupled Sepharose beads yielded excellent purity with acceptable recovery and was free of glycoform bias. Glycosylation profiles obtained by MALDI-MS were highly comparable to those obtained with an established capillary gel electrophoresis-laser induced fluorescence method. Our method delivers accurate results for the analysis of changes of important glycosylation parameters, such as sialylation and number of N-acetyllactosamine units, for the time course of a fermentation. We could resolve differences in glycosylation between several CCS samples.


Subject(s)
Chromatography, Affinity/methods , Culture Media, Serum-Free/chemistry , Erythropoietin/isolation & purification , Erythropoietin/metabolism , Glycosylation , Animals , CHO Cells , Cricetulus , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
13.
Nat Genet ; 49(8): 1182-1191, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28628107

ABSTRACT

Immunoglobulins are the effector molecules of the adaptive humoral immune system. In a genome-wide association study of 19,219 individuals, we found 38 new variants and replicated 5 known variants associating with IgA, IgG or IgM levels or with composite immunoglobulin traits, accounted for by 32 loci. Variants at these loci also affect the risk of autoimmune diseases and blood malignancies and influence blood cell development. Notable associations include a rare variant at RUNX3 decreasing IgA levels by shifting isoform proportions (rs188468174[C>T]: P = 8.3 × 10-55, ß = -0.90 s.d.), a rare in-frame deletion in FCGR2B abolishing IgG binding to the encoded receptor (p.Asn106del: P = 4.2 × 10-8, ß = 1.03 s.d.), four IGH locus variants influencing class switching, and ten new associations with the HLA region. Our results provide new insight into the regulation of humoral immunity.


Subject(s)
Genetic Variation , Immunoglobulins/genetics , Cohort Studies , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Hematopoiesis/genetics , Humans , Iceland , Immunity, Humoral/genetics , Immunoglobulin Class Switching/genetics , Immunoglobulin Isotypes/genetics , Male , Polymorphism, Single Nucleotide , Sweden
14.
EBioMedicine ; 17: 108-118, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28169190

ABSTRACT

OBJECTIVE: The objective of our study is to investigate the Fc glycosylation profiles of both antigen-specific IgG targeted against proteinase 3 (PR3-ANCA) and total IgG as prognostic markers of relapse in patients with Granulomatosis with Polyangiitis (GPA). METHODS: Seventy-five patients with GPA and a PR3-ANCA rise during follow-up were included, of whom 43 patients relapsed within a median period of 8 (2-16) months. The N-glycan at Asn297 of affinity-purified and denatured total IgG and PR3-ANCA was determined by mass spectrometry of glycopeptides in samples obtained at the time of the PR3-ANCA rise and at the time of the relapse or time-matched during remission. RESULTS: Patients with total IgG1 exhibiting low galactosylation or low sialylation were highly prone to relapse after an ANCA rise (HR 3.46 [95%-CI 1.73-6.96], p<0.0001 and HR 3.22 [95%-CI 1.52-6.83], p=0.002, respectively). In relapsing patients, total IgG1 galactosylation, sialylation and bisection significantly decreased and fucosylation significantly increased from the time of the PR3-ANCA rise to the relapse (p<0.0001, p=0.0087, p<0.0001 and p=0.0025), while the glycosylation profile remained similar in non-relapsing patients. PR3-ANCA IgG1 galactosylation, sialylation and fucosylation of PR3-ANCA IgG1 decreased in relapsing patients (p=0.0073, p=0.0049 and p=0.0205), but also in non-relapsing patients (p=0.0007, p=0.0114 and p=0.0002), while bisection increased only in non-relapsing patients (p<0.0001). CONCLUSION: While Fc glycosylation profiles have been associated with clinically manifest autoimmune diseases, in the present study we show that low galactosylation and sialyation in total IgG1 but not PR3-ANCA IgG1 predicts disease reactivation in patients with GPA who experience an ANCA rise during follow-up. We postulate that glycosylation profiles may be useful in pre-emptive therapy studies using ANCA rises as guideline.


Subject(s)
Granulomatosis with Polyangiitis/blood , Immunoglobulin G/blood , Adult , Aged , Biomarkers/blood , Case-Control Studies , Female , Galactose/metabolism , Granulomatosis with Polyangiitis/pathology , Humans , Immunoglobulin Fc Fragments/blood , Immunoglobulin G/immunology , Male , Middle Aged , Myeloblastin/immunology , Sialic Acids/metabolism
15.
Mol Cell Proteomics ; 16(2): 228-242, 2017 02.
Article in English | MEDLINE | ID: mdl-27932526

ABSTRACT

Glycosylation is an abundant co- and post-translational protein modification of importance to protein processing and activity. Although not template-defined, glycosylation does reflect the biological state of an organism and is a high-potential biomarker for disease and patient stratification. However, to interpret a complex but informative sample like the total plasma N-glycome, it is important to establish its baseline association with plasma protein levels and systemic processes. Thus far, large-scale studies (n >200) of the total plasma N-glycome have been performed with methods of chromatographic and electrophoretic separation, which, although being informative, are limited in resolving the structural complexity of plasma N-glycans. MS has the opportunity to contribute additional information on, among others, antennarity, sialylation, and the identity of high-mannose type species.Here, we have used matrix-assisted laser desorption/ionization (MALDI)-Fourier transform ion cyclotron resonance (FTICR)-MS to study the total plasma N-glycome of 2144 healthy middle-aged individuals from the Leiden Longevity Study, to allow association analysis with markers of metabolic health and inflammation. To achieve this, N-glycans were enzymatically released from their protein backbones, labeled at the reducing end with 2-aminobenzoic acid, and following purification analyzed by negative ion mode intermediate pressure MALDI-FTICR-MS. In doing so, we achieved the relative quantification of 61 glycan compositions, ranging from Hex4HexNAc2 to Hex7HexNAc6dHex1Neu5Ac4, as well as that of 39 glycosylation traits derived thereof. Next to confirming known associations of glycosylation with age and sex by MALDI-FTICR-MS, we report novel associations with C-reactive protein (CRP), interleukin 6 (IL-6), body mass index (BMI), leptin, adiponectin, HDL cholesterol, triglycerides (TG), insulin, gamma-glutamyl transferase (GGT), alanine aminotransferase (ALT), and smoking. Overall, the bisection, galactosylation, and sialylation of diantennary species, the sialylation of tetraantennary species, and the size of high-mannose species proved to be important plasma characteristics associated with inflammation and metabolic health.


Subject(s)
Biomarkers/blood , Inflammation/metabolism , Proteomics/instrumentation , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/instrumentation , Aged , Body Mass Index , C-Reactive Protein/metabolism , Cyclotrons , Fourier Analysis , Glycosylation , Humans , Male , Middle Aged
16.
Br J Haematol ; 176(4): 651-660, 2017 02.
Article in English | MEDLINE | ID: mdl-27891581

ABSTRACT

Haemolytic disease of the fetus and newborn (HDFN) is a severe disease in which fetal red blood cells (RBC) are destroyed by maternal anti-RBC IgG alloantibodies. HDFN is most often caused by anti-D but may also occur due to anti-K, -c- or -E. We recently found N-linked glycosylation of anti-D to be skewed towards low fucosylation, thereby increasing the affinity to IgG-Fc receptor IIIa and IIIb, which correlated with HDFN disease severity. Here, we analysed 230 pregnant women with anti-c, -E or -K alloantibodies from a prospective screening cohort and investigated the type of Fc-tail glycosylation of these antibodies in relation to the trigger of immunisation and pregnancy outcome. Anti-c, -E and -K show - independent of the event that had led to immunisation - a different kind of Fc-glycosylation compared to that of the total IgG fraction, but with less pronounced differences compared to anti-D. High Fc-galactosylation and sialylation of anti-c correlated with HDFN disease severity, while low anti-K Fc-fucosylation correlated with severe fetal anaemia. IgG-Fc glycosylation of anti-RBC antibodies is shaped depending on the antigen. These features influence their clinical potency and may therefore be used to predict severity and identify those needing treatment.


Subject(s)
Erythroblastosis, Fetal/immunology , Immunoglobulin Fc Fragments/metabolism , Isoantibodies/blood , Adult , Blood Group Antigens/immunology , Erythroblastosis, Fetal/diagnosis , Erythrocytes/immunology , Female , Glycosylation , Humans , Infant, Newborn , Male , Pregnancy , Severity of Illness Index
17.
Sci Rep ; 6: 36964, 2016 11 22.
Article in English | MEDLINE | ID: mdl-27872474

ABSTRACT

Immunoglobulin G (IgG) mediates its immune functions through complement and cellular IgG-Fc receptors (FcγR). IgG contains an evolutionary conserved N-linked glycan at position Asn297 in the Fc-domain. This glycan consists of variable levels of fucose, galactose, sialic acid, and bisecting N-acetylglucosamine (bisection). Of these variations, the lack of fucose strongly enhances binding to the human FcγRIII, a finding which is currently used to improve the efficacy of therapeutic monoclonal antibodies. The influence of the other glycan traits is largely unknown, mostly due to lack of glyco-engineering tools. We describe general methods to produce recombinant proteins of any desired glycoform in eukaryotic cells. Decoy substrates were used to decrease the level of fucosylation or galactosylation, glycosyltransferases were transiently overexpressed to enhance bisection, galactosylation and sialylation and in vitro sialylation was applied for enhanced sialylation. Combination of these techniques enable to systematically explore the biological effect of these glycosylation traits for IgG and other glycoproteins.

18.
Mol Cell Proteomics ; 15(7): 2217-28, 2016 07.
Article in English | MEDLINE | ID: mdl-27009965

ABSTRACT

Antibody glycosylation analysis has seen methodological progress resulting in new findings with regard to antibody glycan structure and function in recent years. For example, antigen-specific IgG glycosylation analysis is now applicable for clinical samples because of the increased sensitivity of measurements, and this has led to new insights in the relationship between IgG glycosylation and various diseases. Furthermore, many new methods have been developed for the purification and analysis of IgG Fc glycopeptides, notably multiple reaction monitoring for high-throughput quantitative glycosylation analysis. In addition, new protocols for IgG Fab glycosylation analysis were established revealing autoimmune disease-associated changes. Functional analysis has shown that glycosylation of IgA and IgE is involved in transport across the intestinal epithelium and receptor binding, respectively.


Subject(s)
Autoimmune Diseases/metabolism , Immunoglobulin Fc Fragments/chemistry , Proteomics/methods , Antigens/metabolism , Biological Transport , Glycosylation , Humans , Immunoglobulin A/metabolism , Immunoglobulin G/metabolism
19.
Anal Chem ; 87(23): 11691-9, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26536155

ABSTRACT

The analysis of N- and O-glycopeptides remains challenging due to the microheterogeneity (different glycoforms attached to one glycosylation site) and macroheterogeneity (site occupancy) of the glycoprotein. Trypsin is by far the most commonly used protease in glycoproteomic studies; however, it often results in long peptides that can harbor more than one glycan which may hamper site identification. The use of unspecific proteases such as Pronase can largely overcome this problem by generating glycopeptides with a small peptide portion. While the resulting glycopeptides are very useful for tandem mass spectrometric investigation, the analysis with conventional 1D-LC-ESI-MS/MS approaches can lead to incomplete glycosylation coverage because of the very heterogeneous physicochemical properties of the glycopeptides depending on the peptide sequence as well as the size and charges of the glycan moiety. Here, we describe a universal workflow for site-specific N- and O-glycopeptide analysis of Pronase treated glycoproteins with integrated, sequential C18 reverse phase and porous graphitized carbon-LC-ESI-QTOF-MS/MS employing a combination of lower- and enhanced-energy collision-induced dissociation. The approach was evaluated on glycoprotein standards and also applied to investigate the glycosylation of human IgG3 providing details on the hitherto uncharacterized glycosylation site Asn392 of the CH3 domain. This analytical tool can be applied to a variety of glycoproteins for site-specific N- and O-glycopeptide analysis, resulting in a good glycopeptide coverage within a single sample run and, thus, requiring only small amounts of sample.


Subject(s)
Carbon/chemistry , Glycopeptides/analysis , Glycopeptides/chemistry , Pronase/metabolism , Spectrometry, Mass, Electrospray Ionization , Chromatography, Liquid , Glycopeptides/metabolism , Glycosylation , Humans , Particle Size , Porosity , Surface Properties
20.
J Proteome Res ; 14(9): 4019-28, 2015 Sep 04.
Article in English | MEDLINE | ID: mdl-26244886

ABSTRACT

It has been reported that glycosylation can influence the proteolytic cleavage of proteins. A thorough investigation of this phenomenon was conducted for the serine protease trypsin, which is essential in many proteomics workflows. Monoclonal and polyclonal immunoglobulin G biopharmaceuticals were employed as model substances, which are highly relevant for the bioanalytical applications. Relative quantitation of glycopeptides derived from the conserved Fc-glycosylation site allowed resolution of biases on the level of individual glycan compositions. As a result, a strong preferential digestion of high mannose, hybrid, alpha2-3-sialylated and bisected glycoforms was observed over the most abundant neutral, fucosylated glycoforms. Interestingly, this bias was, to a large extent, dependent on the intact higher order structure of the antibodies and, consequently, was drastically reduced in denatured versus intact antibodies. In addition, a cleavage protocol with acidic denaturation was tested, which featured reduced hands-on time and toxicity while showing highly comparable results to a published denaturation, reduction, and alkylation based protocol.


Subject(s)
Antibodies, Monoclonal/chemistry , Glycopeptides/chemistry , Immunoglobulin G/chemistry , Trypsin/metabolism , Animals , Antibodies, Monoclonal/metabolism , CHO Cells , Cricetinae , Cricetulus , Glycopeptides/metabolism , Glycosylation , Immunoglobulin G/metabolism , Protein Denaturation , Proteomics/methods , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...