Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
J Crohns Colitis ; 2024 May 15.
Article En | MEDLINE | ID: mdl-38747506

BACKGROUND AND AIMS: Crohn's disease (CD) is characterised by the expansion of mesenteric adipose tissue (MAT), named creeping fat (CF), which seems to be directly related to disease activity. Adipose-stem cells (ASCs) isolated from the CF of patients with CD are extremely pro-inflammatory, which persists during disease remission. We hypothesised that the dysfunctional ASCs in CD accumulate epigenetic modifications triggered by the inflammatory environment that could serve as molecular markers. METHODS: Genome-wide DNA methylome and transcriptome profiling were performed in ASCs isolated from MAT adipose-tissue biopsies of patients with active and inactive disease and from non-Crohn's disease patients (non-CD). A validation cohort was used to test the main candidate genes via qPCR in other fat depots and immune cells. RESULTS: We found differences in DNA-methylation and gene expression between ASCs isolated from patients with CD and from non-CD subjects, but we found no differences related to disease activity. Pathway enrichment analysis revealed that oxidative stress and immune response were significantly enriched in active CD and integration analysis identified MAB21L2, a cell fate-determining gene, as the most affected gene in CD. Validation analysis confirmed the elevated gene expression of MAB21L2 in MAT and in adipose tissue macrophages in active CD. We also found a strong association between expression of the calcium channel subunit gene CACNA1H and disease remission, as CACNA1H expression was higher in ASCs and MAT from patients with inactive CD, and correlates negatively with C-reactive protein in peripheral blood mononuclear cells. CONCLUSION: We identified a potential gene signature of CD in ASCs obtained from MAT. Integration analysis highlighted two novel genes demonstrating a negative correlation between promoter DNA methylation and transcription: one linked to ASCs in CD (MAB21L2) and the other (CACNA1H) related to disease remission.

2.
Microorganisms ; 12(3)2024 Feb 21.
Article En | MEDLINE | ID: mdl-38543491

To discover potential micro(mi)RNA biomarkers of SARS-CoV-2 infection and disease progression, large-scale deep-sequencing analysis of small RNA expression was performed on plasma samples from 40 patients hospitalized for SARS-CoV-2 infection (median 13.50 [IQR 9-24] days since symptoms initiation) and 21 healthy noninfected individuals. A total of 1218 different miRNAs were identified. When compared with healthy noninfected donors, SARS-CoV-2-infected patients showed significantly (fold change [FC] > 1.2 and adjusted p [padj] < 0.05) altered expression of 190 miRNAs. The top-10 differentially expressed (DE) miRNAs were miR-122-5p, let-7b-5p, miR-146a-5p, miR-342-3p, miR-146b-5p, miR-629-5p, miR-24-3p, miR-12136, let-7a-5p, and miR-191-5p, which displayed FC and padj values ranging from 153 to 5 and 2.51 × 10-32 to 2.21 × 10-21, respectively, which unequivocally diagnosed SARS-CoV-2 infection. No differences in blood cell counts and biochemical plasma parameters, including interleukin 6, ferritin, and D-dimer, were observed between COVID-19 patients on high-flow oxygen therapy, low-flow oxygen therapy, or not requiring oxygen therapy. Notably, 31 significantly deregulated miRNAs were found, when patients on high- and low-flow oxygen therapy were compared. SARS-CoV-2 infection generates a specific miRNA signature in hospitalized patients. Specific miRNA profiles are associated with COVID-19 prognosis in patients requiring oxygen flow.

3.
Andrology ; 12(1): 137-156, 2024 Jan.
Article En | MEDLINE | ID: mdl-37245055

BACKGROUND: Non-invasive molecular biomarkers for classifying azoospermia by origin into either obstructive or non-obstructive/secretory azoospermia, as well as for inferring the spermatogenic reserve of the testis of non-obstructive/secretory azoospermia patients, are of great interest for testicular sperm retrieval outcome prediction for assisted reproduction. Prior analyses of semen small non-coding RNA expression in azoospermia have focused on microRNAs, but there has been a lack of attention on other regulatory small RNA species. In this regard, studying more in-depth expression changes of small non-coding RNA subtypes in small extracellular vesicles from semen of azoospermic individuals could be useful to select additional non-invasive biomarkers with diagnostic/prognostic purposes. MATERIAL AND METHODS: A high-throughput small RNA profiling analysis to determine the expression pattern of seminal small extracellular vesicle microRNAs (analyzed at the isomiR level), PIWI-interacting RNAs, and transfer RNA-derived small RNAs in normozoospermic (n = 4) and azoospermic (obstructive azoospermia because of pathological occurring obstruction in the genital tract, n = 4; secretory azoospermic individuals with positive testicular sperm extraction value, n = 5; secretory azoospermic individuals with negative testicular sperm extraction value, n = 4) individuals was carried out. Reverse transcriptase-quantitative real-time polymerase chain reaction validation analysis of selected microRNAs was additionally performed in a larger number of individuals. RESULTS AND DISCUSSION: Clinically relevant quantitative changes in the small non-coding RNA levels contained in semen small extracellular vesicles can be used as biomarkers for the origin of azoospermia and for predicting the presence of residual spermatogenesis. In this regard, canonical isoform microRNAs (n = 185) but also other isomiR variants (n = 238) stand out in terms of numbers and fold-change differences in expression, underlining the need to consider isomiRs when investigating microRNA-based regulation. Conversely, although transfer RNA-derived small RNAs are shown in our study to represent a high proportion of small non-coding RNA sequences in seminal small extracellular vesicle samples, they are not able to discriminate the origin of azoospermia. PIWI-interacting RNA cluster profiles and individual PIWI-interacting RNAs with significant differential expression were also not able to discriminate. Our study demonstrated that expression values of individual and/or combined canonical isoform microRNAs (miR-10a-5p, miR-146a-5p, miR-31-5p, miR-181b-5p; area under the receiver operating characteristic curve >0.8) in small extracellular vesicles provide considerable clinical value in identifying samples with a high likelihood of sperm retrieval while discriminating azoospermia by origin. Although no individual microRNA showed sufficient discriminating power on its own to identify severe spermatogenic disorders with focal spermatogenesis, multivariate microRNA models in semen small extracellular vesicles have the potential to identify those individuals with residual spermatogenesis. Availability and adoption of such non-invasive molecular biomarkers would represent a great improvement in reproductive treatment decision protocols for azoospermia in clinical practice.


Azoospermia , Extracellular Vesicles , MicroRNAs , RNA, Small Untranslated , Humans , Male , Azoospermia/diagnosis , Azoospermia/genetics , Azoospermia/metabolism , Semen/metabolism , Sperm Retrieval , Testis/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Biomarkers/metabolism , Extracellular Vesicles/metabolism , RNA, Transfer/metabolism , Protein Isoforms
4.
Sci Rep ; 12(1): 21818, 2022 12 17.
Article En | MEDLINE | ID: mdl-36528712

Monitoring the emergence of new SARS-CoV-2 variants is important to detect potential risks of increased transmission or disease severity. We investigated the identification of SARS-CoV-2 variants from real-time reverse transcriptase polymerase chain reaction (RT-PCR) routine diagnostics data. Cycle threshold (Ct) values of positive samples were collected from April 2021 to January 2022 in the Northern Metropolitan Area of Barcelona (n = 15,254). Viral lineage identification from whole genome sequencing (WGS) was available for 4618 (30.3%) of these samples. Pairwise differences in the Ct values between gene targets (ΔCt) were analyzed for variants of concern or interest circulating in our area. A specific delay in the Ct of the N-gene compared to the RdRp-gene (ΔCtNR) was observed for Alpha, Delta, Eta and Omicron. Temporal differences in ΔCtNR correlated with the dynamics of viral replacement of Alpha by Delta and of Delta by Omicron according to WGS results. Using ΔCtNR, prediction of new variants of concern at early stages of circulation was achieved with high sensitivity and specificity (91.1% and 97.8% for Delta; 98.5% and 90.8% for Omicron). Thus, tracking population-wide trends in ΔCt values obtained from routine diagnostics testing in combination with WGS could be useful for real-time management and response to local epidemics.


COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/epidemiology , Whole Genome Sequencing , Real-Time Polymerase Chain Reaction
5.
Sci Rep ; 12(1): 17220, 2022 10 14.
Article En | MEDLINE | ID: mdl-36241713

Currently, microRNAs (miRs) are annotated as a single defined sequence (canonical), even though high-throughput small RNA sequencing has identified miR isoforms (isomiRs) that differ from their canonical counterparts in length, sequence, or both. Here we describe a simple reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR)-based assay for quantification of the miR-100-5p_iso_3p:-2 variant. We chose miR-100-5p because the canonical sequence was underrepresented in our evaluation of human plasma. The quantification of miR-100-5p_iso_3 p:-2 from 57 plasma samples demonstrated high concordance between high-throughput RNA sequencing and RT-qPCR results (r = 0.55, p < 0.0001). Of note, we could not detect or quantify miR-100-5p in our plasma samples using a commercial TaqMan canonical miR-100-5p RT-qPCR kit. With these 57 samples, we also adapted this assay to specifically quantify the canonical sequences of miR-122-5p and miR-192-5p. Similar to the results obtained with miR-100-5p_iso_3p:-2, RT-qPCR results for miR-122-5p and miR-192-5p highly correlated with high-throughput RNA sequencing data (miR-122-5p: r = 0.44, p = 0.0005; miR-192-5p: r = 0.72, p < 0.0001). The assay described here can be easily adapted to many different identified isomiRs. Because of the high specificity of isomiRs, their reliable RT-qPCR-based quantification could provide greater resolution and higher accuracy than using canonical sequences.


MicroRNAs , High-Throughput Nucleotide Sequencing , Humans , MicroRNAs/genetics , Protein Isoforms/genetics , RNA-Directed DNA Polymerase/genetics , Real-Time Polymerase Chain Reaction
6.
BMC Bioinformatics ; 22(1): 215, 2021 Apr 26.
Article En | MEDLINE | ID: mdl-33902448

BACKGROUND: Next generation sequencing has allowed the discovery of miRNA isoforms, termed isomiRs. Some isomiRs are derived from imprecise processing of pre-miRNA precursors, leading to length variants. Additional variability is introduced by non-templated addition of bases at the ends or editing of internal bases, resulting in base differences relative to the template DNA sequence. We hypothesized that some component of the isomiR variation reported so far could be due to systematic technical noise and not real. RESULTS: We have developed the XICRA pipeline to analyze small RNA sequencing data at the isomiR level. We exploited its ability to use single or merged reads to compare isomiR results derived from paired-end (PE) reads with those from single reads (SR) to address whether detectable sequence differences relative to canonical miRNAs found in isomiRs are true biological variations or the result of errors in sequencing. We have detected non-negligible systematic differences between SR and PE data which primarily affect putative internally edited isomiRs, and at a much smaller frequency terminal length changing isomiRs. This is relevant for the identification of true isomiRs in small RNA sequencing datasets. CONCLUSIONS: We conclude that potential artifacts derived from sequencing errors and/or data processing could result in an overestimation of abundance and diversity of miRNA isoforms. Efforts in annotating the isomiRnome should take this into account.


Data Analysis , MicroRNAs , High-Throughput Nucleotide Sequencing , MicroRNAs/genetics , Sequence Analysis, RNA , Exome Sequencing
7.
FEBS J ; 288(4): 1201-1223, 2021 02.
Article En | MEDLINE | ID: mdl-32602219

Histone deacetylase 11 (HDAC11) is the latest identified member of the histone deacetylase family of enzymes. It is highly expressed in brain, heart, testis, kidney, and skeletal muscle, although its role in these tissues is poorly understood. Here, we investigate for the first time the consequences of HDAC11 genetic impairment on skeletal muscle regeneration, a process principally dependent on its resident stem cells (satellite cells) in coordination with infiltrating immune cells and stromal cells. Our results show that HDAC11 is dispensable for adult muscle growth and establishment of the satellite cell population, while HDAC11 deficiency advances the regeneration process in response to muscle injury. This effect is not caused by differences in satellite cell activation or proliferation upon injury, but rather by an enhanced capacity of satellite cells to differentiate at early regeneration stages in the absence of HDAC11. Infiltrating HDAC11-deficient macrophages could also contribute to this accelerated muscle regenerative process by prematurely producing high levels of IL-10, a cytokine known to promote myoblast differentiation. Altogether, our results show that HDAC11 depletion advances skeletal muscle regeneration and this finding may have potential implications for designing new strategies for muscle pathologies coursing with chronic damage. DATABASE: Data were deposited in NCBI's Gene Expression Omnibus accessible through GEO Series accession number GSE147423.


Cell Differentiation/genetics , Histone Deacetylases/genetics , Muscle, Skeletal/metabolism , Satellite Cells, Skeletal Muscle/metabolism , Animals , Cell Line , Cell Proliferation/genetics , Cells, Cultured , Gene Expression Profiling/methods , Histone Deacetylases/metabolism , Humans , Mice, Knockout , Muscle Development/genetics , Muscle, Skeletal/cytology , Muscle, Skeletal/physiology , RNA-Seq/methods , Regeneration/genetics , Satellite Cells, Skeletal Muscle/cytology
8.
J Med Genet ; 55(11): 765-778, 2018 11.
Article En | MEDLINE | ID: mdl-30166351

BACKGROUND: Heritability estimates have revealed an important contribution of SNP variants for most common traits; however, SNP analysis by single-trait genome-wide association studies (GWAS) has failed to uncover their impact. In this study, we applied a multitrait GWAS approach to discover additional factor of the missing heritability of human anthropometric variation. METHODS: We analysed 205 traits, including diseases identified at baseline in the GCAT cohort (Genomes For Life- Cohort study of the Genomes of Catalonia) (n=4988), a Mediterranean adult population-based cohort study from the south of Europe. We estimated SNP heritability contribution and single-trait GWAS for all traits from 15 million SNP variants. Then, we applied a multitrait-related approach to study genome-wide association to anthropometric measures in a two-stage meta-analysis with the UK Biobank cohort (n=336 107). RESULTS: Heritability estimates (eg, skin colour, alcohol consumption, smoking habit, body mass index, educational level or height) revealed an important contribution of SNP variants, ranging from 18% to 77%. Single-trait analysis identified 1785 SNPs with genome-wide significance threshold. From these, several previously reported single-trait hits were confirmed in our sample with LINC01432 (p=1.9×10-9) variants associated with male baldness, LDLR variants with hyperlipidaemia (ICD-9:272) (p=9.4×10-10) and variants in IRF4 (p=2.8×10-57), SLC45A2 (p=2.2×10-130), HERC2 (p=2.8×10-176), OCA2 (p=2.4×10-121) and MC1R (p=7.7×10-22) associated with hair, eye and skin colour, freckling, tanning capacity and sun burning sensitivity and the Fitzpatrick phototype score, all highly correlated cross-phenotypes. Multitrait meta-analysis of anthropometric variation validated 27 loci in a two-stage meta-analysis with a large British ancestry cohort, six of which are newly reported here (p value threshold <5×10-9) at ZRANB2-AS2, PIK3R1, EPHA7, MAD1L1, CACUL1 and MAP3K9. CONCLUSION: Considering multiple-related genetic phenotypes improve associated genome signal detection. These results indicate the potential value of data-driven multivariate phenotyping for genetic studies in large population-based cohorts to contribute to knowledge of complex traits.


Biological Variation, Individual , Genetic Predisposition to Disease , Genome-Wide Association Study , Quantitative Trait Loci , Quantitative Trait, Heritable , Anthropometry , Female , Genotype , Humans , Inheritance Patterns , Male , Phenotype , Polymorphism, Single Nucleotide , Public Health Surveillance , Risk Assessment
9.
Antiviral Res ; 155: 106-114, 2018 07.
Article En | MEDLINE | ID: mdl-29807039

Human immunodeficiency virus type 1 (HIV-1)-induced inflammation and/or long-term antiretroviral drug toxicity may contribute to the evolution of liver disease. We investigated circulating plasma microRNAs (miRNAs) as potential biomarkers of liver injury in patients mono-infected with HIV-1. We performed large-scale deep sequencing analyses of small RNA level on plasma samples from patients with HIV-1 mono-infection that had elevated or normal levels of alanine aminotransferase (ALT) or focal nodular hyperplasia (FNH). Hepatitis C virus (HCV) mono-infected patients were also studied. Compared to healthy donors, patients with HIV-1 or HCV mono-infections showed significantly altered (fold change >2, adjusted p < 0.05) level of 25 and 70 miRNAs, respectively. Of the 25 altered miRNAs found in patients with HIV-1, 19 were also found in patients mono-infected with HCV. Moreover, 13 of the 14 most up-regulated miRNAs (range: 9.3-3.4-fold increase) in patients with HCV mono-infections were also up-regulated in patients with HIV-1 mono-infections. Importantly, most of these miRNAs significantly and positively correlated with ALT and aspartate aminotransferase (AST) levels, and liver fibrosis stage (p < 0.05). MiR-122-3p and miR-193b-5p were highly up-regulated HIV-1 mono-infected patients with elevated ALT or FNH, but not in HIV-1 patients with normal levels of ALT. These results reveal that HIV-1 infections impacted liver-related miRNA levels in the absence of an HCV co-infection, which highlights the potential of miRNAs as biomarkers for the progression of liver injury in HIV-1 infected patients.


Circulating MicroRNA/blood , HIV Infections/complications , Liver Diseases/genetics , Liver Diseases/virology , Liver/injuries , Adult , Aged , Biomarkers/blood , Disease Progression , Female , HIV-1/genetics , Humans , Liver/virology , Liver Cirrhosis/genetics , Liver Cirrhosis/virology , Male , Middle Aged , Transcriptome , Viral Load
10.
Sci Rep ; 7: 39348, 2017 01 04.
Article En | MEDLINE | ID: mdl-28051113

We wanted to implement an NGS strategy to globally analyze hereditary cancer with diagnostic quality while retaining the same degree of understanding and control we had in pre-NGS strategies. To do this, we developed the I2HCP panel, a custom bait library covering 122 hereditary cancer genes. We improved bait design, tested different NGS platforms and created a clinically driven custom data analysis pipeline. The I2HCP panel was developed using a training set of hereditary colorectal cancer, hereditary breast and ovarian cancer and neurofibromatosis patients and reached an accuracy, analytical sensitivity and specificity greater than 99%, which was maintained in a validation set. I2HCP changed our diagnostic approach, involving clinicians and a genetic diagnostics team from panel design to reporting. The new strategy improved diagnostic sensitivity, solved uncertain clinical diagnoses and identified mutations in new genes. We assessed the genetic variation in the complete set of hereditary cancer genes, revealing a complex variation landscape that coexists with the disease-causing mutation. We developed, validated and implemented a custom NGS-based strategy for hereditary cancer diagnostics that improved our previous workflows. Additionally, the existence of a rich genetic variation in hereditary cancer genes favors the use of this panel to investigate their role in cancer risk.


Early Detection of Cancer/methods , Genetic Testing/methods , Molecular Diagnostic Techniques/methods , Neoplastic Syndromes, Hereditary/diagnosis , Neoplastic Syndromes, Hereditary/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Sensitivity and Specificity
11.
Sci Rep ; 6: 24675, 2016 Apr 19.
Article En | MEDLINE | ID: mdl-27091625

Resistance to oxaliplatin (OXA) is a complex process affecting the outcomes of metastatic colorectal cancer (CRC) patients treated with this drug. De-regulation of the NF-κB signalling pathway has been proposed as an important mechanism involved in this phenomenon. Here, we show that NF-κB was hyperactivated in in vitro models of OXA-acquired resistance but was attenuated by the addition of Curcumin, a non-toxic NF-κB inhibitor. The concomitant combination of Curcumin + OXA was more effective and synergistic in cell lines with acquired resistance to OXA, leading to the reversion of their resistant phenotype, through the inhibition of the NF-κB signalling cascade. Transcriptomic profiling revealed the up-regulation of three NF-κB-regulated CXC-chemokines, CXCL8, CXCL1 and CXCL2, in the resistant cells that were more efficiently down-regulated after OXA + Curcumin treatment as compared to the sensitive cells. Moreover, CXCL8 and CXCL1 gene silencing made resistant cells more sensitive to OXA through the inhibition of the Akt/NF-κB pathway. High expression of CXCL1 in FFPE samples from explant cultures of CRC patients-derived liver metastases was associated with response to OXA + Curcumin. In conclusion, we suggest that combination of OXA + Curcumin could be an effective treatment, for which CXCL1 could be used as a predictive marker, in CRC patients.


Antineoplastic Agents/pharmacology , Chemokines, CXC/metabolism , Colorectal Neoplasms/drug therapy , Curcumin/pharmacology , Drug Resistance, Neoplasm/drug effects , NF-kappa B/metabolism , Organoplatinum Compounds/pharmacology , Signal Transduction/drug effects , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Colorectal Neoplasms/pathology , Humans , Oxaliplatin
12.
Genome Announc ; 3(1)2015 Feb 05.
Article En | MEDLINE | ID: mdl-25657273

We present here the draft genome sequences of two Mycobacterium setense strains. One of them corresponds to the M. setense type strain DSM-45070, originally isolated from a patient with a posttraumatic chronic skin abscess. The other one corresponds to the nonpathogenic M. setense strain Manresensis, isolated from the Cardener River crossing Manresa, Catalonia, Spain. A comparative genomic analysis shows a smaller genome size and fewer genes in M. setense strain Manresensis relative to those of the type strain, and it shows the genome segments unique to each strain.

13.
BMC Genomics ; 14: 371, 2013 Jun 01.
Article En | MEDLINE | ID: mdl-23724959

BACKGROUND: Epidermal Growth Factor (EGF) plays an important function in the regulation of cell growth, proliferation, and differentiation by binding to its receptor (EGFR) and providing cancer cells with increased survival responsiveness. Signal transduction carried out by EGF has been extensively studied at both transcriptional and post-transcriptional levels. Little is known about the involvement of microRNAs (miRNAs) in the EGF signaling pathway. miRNAs have emerged as major players in the complex networks of gene regulation, and cancer miRNA expression studies have evidenced a direct involvement of miRNAs in cancer progression. RESULTS: In this study, we have used an integrative high content analysis approach to identify the specific miRNAs implicated in EGF signaling in HeLa cells as potential mediators of cancer mediated functions. We have used microarray and deep-sequencing technologies in order to obtain a global view of the EGF miRNA transcriptome with a robust experimental cross-validation. By applying a procedure based on Rankprod tests, we have delimited a solid set of EGF-regulated miRNAs. After validating regulated miRNAs by reverse transcription quantitative PCR, we have derived protein networks and biological functions from the predicted targets of the regulated miRNAs to gain insight into the potential role of miRNAs in EGF-treated cells. In addition, we have analyzed sequence heterogeneity due to editing relative to the reference sequence (isomiRs) among regulated miRNAs. CONCLUSIONS: We propose that the use of global genomic miRNA cross-validation derived from high throughput technologies can be used to generate more reliable datasets inferring more robust networks of co-regulated predicted miRNA target genes.


Epidermal Growth Factor/pharmacology , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , MicroRNAs/genetics , Oligonucleotide Array Sequence Analysis/methods , Gene Silencing , Gene Targeting , HeLa Cells , Humans , Sequence Analysis, RNA , Signal Transduction/drug effects , Signal Transduction/genetics , Transcription, Genetic/drug effects , Transcription, Genetic/genetics
14.
BMC Genomics ; 12: 326, 2011 Jun 23.
Article En | MEDLINE | ID: mdl-21699700

BACKGROUND: Epidermal Growth Factor (EGF) is a key regulatory growth factor activating many processes relevant to normal development and disease, affecting cell proliferation and survival. Here we use a combined approach to study the EGF dependent transcriptome of HeLa cells by using multiple long oligonucleotide based microarray platforms (from Agilent, Operon, and Illumina) in combination with digital gene expression profiling (DGE) with the Illumina Genome Analyzer. RESULTS: By applying a procedure for cross-platform data meta-analysis based on RankProd and GlobalAncova tests, we establish a well validated gene set with transcript levels altered after EGF treatment. We use this robust gene list to build higher order networks of gene interaction by interconnecting associated networks, supporting and extending the important role of the EGF signaling pathway in cancer. In addition, we find an entirely new set of genes previously unrelated to the currently accepted EGF associated cellular functions. CONCLUSIONS: We propose that the use of global genomic cross-validation derived from high content technologies (microarrays or deep sequencing) can be used to generate more reliable datasets. This approach should help to improve the confidence of downstream in silico functional inference analyses based on high content data.


Epidermal Growth Factor/pharmacology , Gene Expression Profiling , Oligonucleotide Array Sequence Analysis/methods , Sequence Analysis, DNA/methods , HeLa Cells , Humans , Meta-Analysis as Topic , Metabolic Networks and Pathways/genetics , Metallothionein/genetics , Metallothionein/metabolism , Signal Transduction , Software
15.
Blood ; 112(9): 3624-37, 2008 Nov 01.
Article En | MEDLINE | ID: mdl-18669876

The CD40-CD154 dyad seems to play a prominent role fostering the immune-inflammatory response triggered by endothelial cell (EC)-T-cell communication. To delineate comprehensively the involvement of CD40 (TNFRSF5) in EC activation, we combined RNAi-mediated CD40 knockdown with comparative genome-wide transcriptional profiling of ECs interacting with (CD154+) T cells. We report the initiation of a profound stress response in ECs upon CD40-CD154 engagement through early up-regulation of, among others, the major proinflammatory NF-kappaB and MAPK/SAPK pathways and their associated transcription factors. Moreover, we have identified novel genes regulated through the CD40-CD154 interaction, and pathways previously unrecognized to be induced by CD40 signaling in ECs. Thus, we document a significant down-regulation of endothelial APLN by CD40-CD154 interaction, TNFalpha/IFNgamma exposure, and in immune-inflammatory pathologies, which could lead to hemodynamic dysfunction. Conversely, CD40-mediated up-regulation of the viral immune surveillance system, notably TLR3, IFIH1, RIG-I, and RNASEL, establishes a reverse link from adaptive to innate immunity in ECs. Moreover, systematic enrichment analysis substantiates endothelial CD40 involvement in the transcriptional regulation of gene networks associated with adhesion and motility, immunity, cell fate control, hemostasis, and metabolism. Our study also highlights the anti-inflammatory potential of RNAi-mediated CD40 inhibition, and the relevance of CD40 signaling for therapeutic intervention.


CD40 Antigens/genetics , CD40 Antigens/metabolism , Endothelial Cells/immunology , Animals , Apelin , CD40 Antigens/antagonists & inhibitors , CD40 Ligand/metabolism , Cell Communication , Cells, Cultured , Coculture Techniques , Endothelial Cells/metabolism , Gene Expression Profiling , Humans , Inflammation Mediators/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Jurkat Cells , Kidney Transplantation/immunology , Lymphocyte Activation , MAP Kinase Signaling System , NF-kappa B/metabolism , Oligonucleotide Array Sequence Analysis , RNA Interference , RNA, Small Interfering/genetics , Rats , Rats, Inbred BN , Rats, Wistar , Signal Transduction , T-Lymphocytes/immunology
16.
Blood ; 104(12): 3642-6, 2004 Dec 01.
Article En | MEDLINE | ID: mdl-15315968

The CD40-CD154 dyad has a central role in the development of immune-inflammatory processes. Therefore, disruption of CD40 signaling has the potential to be therapeutically useful in a number of disease indications, including autoimmune syndromes, atherosclerosis, and allograft rejection. Blocking antibodies to CD154 have been successfully employed in experimental animal models, and recently in clinical trials, to prevent or treat these immunologically induced diseases. However, the thrombotic events observed in some of these studies raise important issues regarding future use of anti-CD154 antibodies in humans. In this study, we demonstrate that a small interfering RNA (siRNA) can effectively reduce the surface expression of the human CD40 costimulatory receptor. Moreover, by rendering endothelial cells unresponsive to CD154(+) Jurkat cell-mediated activation through RNA interference, induction of endothelial cell-adhesion molecule expression and leukocyte adhesion is prevented in vitro. Thus, anti-CD40 siRNA may become a safe and effective therapeutic option for interfering with CD40-CD154-mediated acute or chronic immune-inflammatory conditions.


CD40 Antigens/genetics , Endothelial Cells/cytology , Leukocytes/cytology , RNA, Small Interfering/pharmacology , Anti-Inflammatory Agents , CD40 Antigens/physiology , CD40 Ligand , Cell Adhesion/drug effects , Cell Line , Endothelial Cells/physiology , Endothelium, Vascular/cytology , Gene Silencing/drug effects , Humans , Jurkat Cells , Signal Transduction/drug effects
...