Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 84
3.
J Lipid Res ; 64(12): 100479, 2023 12.
Article En | MEDLINE | ID: mdl-37981011

Oncosterone (6-oxo-cholestane-3ß,5α-diol; OCDO) is an oncometabolite and a tumor promoter on estrogen receptor alpha-positive breast cancer (ER(+) BC) and triple-negative breast cancers (TN BC). OCDO is an oxysterol formed in three steps from cholesterol: 1) oxygen addition at the double bond to give α- or ß- isomers of 5,6-epoxycholestanols (5,6-EC), 2) hydrolyses of the epoxide ring of 5,6-ECs to give cholestane-3ß,5α,6ß-triol (CT), and 3) oxidation of the C6 hydroxyl of CT to give OCDO. On the other hand, cholesterol can be hydroxylated by CYP27A1 at the ultimate methyl carbon of its side chain to give 27-hydroxycholesterol ((25R)-Cholest-5-ene-3beta,26-diol, 27HC), which is a tumor promoter for ER(+) BC. It is currently unknown whether OCDO and its precursors can be hydroxylated at position C27 by CYP27A1, as is the impact of such modification on the proliferation of ER(+) and TN BC cells. We investigated, herein, whether 27H-5,6-ECs ((25R)-5,6-epoxycholestan-3ß,26-diol), 27H-CT ((25R)-cholestane-3ß,5α,6ß,26-tetrol) and 27H-OCDO ((25R)-cholestane-6-oxo-3ß,5α,26-triol) exist as metabolites and can be produced by cells expressing CYP27A1. We report, for the first time, that these compounds exist as metabolites in humans. We give pharmacological and genetic evidence that CYP27A1 is responsible for their production. Importantly, we found that 27-hydroxy-OCDO (27H-OCDO) inhibits BC cell proliferation and blocks OCDO and 27-HC-induced proliferation in BC cells, showing that this metabolic conversion commutes the proliferative properties of OCDO into antiproliferative ones. These data suggest an unprecedented role of CYP27A1 in the control of breast carcinogenesis by inhibiting the tumor promoter activities of oncosterone and 27-HC.


Breast Neoplasms , Oxysterols , Humans , Female , Hydroxylation , Cholesterol/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Cytochrome P-450 Enzyme System/metabolism , Carcinogens/metabolism , Cholestanetriol 26-Monooxygenase
4.
J Steroid Biochem Mol Biol ; 234: 106396, 2023 11.
Article En | MEDLINE | ID: mdl-37683773

Cholestane-3ß,5α,6ß-triol (CT) is a primary metabolite of 5,6-epoxycholesterols (5,6-EC) that is catalyzed by the cholesterol-5,6-epoxide hydrolase (ChEH). CT is a well-known biomarker for Niemann-Pick disease type C (NP-C), a progressive inherited neurodegenerative disease. On the other hand, CT is known to be metabolized by the 11ß-hydroxysteroid-dehydrogenase of type 2 (11ß-HSD2) into a tumor promoter named oncosterone that stimulates the growth of breast cancer tumors. Sulfation is a major metabolic transformation leading to the production of sulfated oxysterols. The production of cholestane-5α,6ß-diol-3ß-O-sulfate (CDS) has been reported in breast cancer cells. However, no data related to CDS biological properties have been reported so far. These studies have been hampered because sulfate esters of sterols and steroids are rapidly hydrolyzed by steroid sulfatase to give free steroids and sterols. In order to get insight into the biological properties of CDS, we report herein the synthesis and the characterization of cholestane-5α,6ß-diol-3ß-sulfonate (CDSN), a non-hydrolysable analogue of CDS. We show that CDSN is a potent inhibitor of 11ß-HSD2 that blocks oncosterone production on cell lysate. The inhibition of oncosterone biosynthesis of a whole cell assay was observed but results from the blockage by CDSN of the uptake of CT in MCF-7 cells. While CDSN inhibits MCF-7 cell proliferation, we found that it potentiates the cytotoxic activity of post-lanosterol cholesterol biosynthesis inhibitors such as tamoxifen and PBPE. This effect was associated with an increase of free sterols accumulation and the appearance of giant multilamellar bodies, a structural feature reminiscent of Type C Niemann-Pick disease cells and consistent with a possible inhibition by CDSN of NPC1. Altogether, our data showed that CDSN is biologically active and that it is a valuable tool to study the biological properties of CDS and more specifically its impact on immunity and viral infection.


Breast Neoplasms , Neurodegenerative Diseases , Humans , Female , Sulfates , 11-beta-Hydroxysteroid Dehydrogenase Type 2 , Cholesterol/metabolism , Sterols
5.
J Steroid Biochem Mol Biol ; 232: 106346, 2023 09.
Article En | MEDLINE | ID: mdl-37321513

Cholesterol plays important roles in many physiological processes, including cell membrane structure and function, hormone synthesis, and the regulation of cellular homeostasis. The role of cholesterol in breast cancer is complex, and some studies have suggested that elevated cholesterol levels may be associated with an increased risk of developing breast cancer, while others have found no significant association. On the other hand, other studies have shown that, for total cholesterol and plasma HDL-associated cholesterol levels, there was inverse association with breast cancer risk. One possible mechanism by which cholesterol may contribute to breast cancer risk is as a key precursor of estrogen. Other potential mechanisms by which cholesterol may contribute to breast cancer risk include its role in inflammation and oxidative stress, which have been linked to cancer progression. Cholesterol has also been shown to play a role in signaling pathways regulating the growth and proliferation of cancer cells. In addition, recent studies have shown that cholesterol metabolism can generate tumor promoters such as cholesteryl esters, oncosterone, 27-hydroxycholesterol but also tumor suppressor metabolites such as dendrogenin A. This review summarizes some of the most important clinical studies that have evaluated the role of cholesterol or its derivatives in breast cancer. It also addresses the role of cholesterol and its derivatives at the cellular level.


Breast Neoplasms , Humans , Female , Breast Neoplasms/metabolism , Incidence , Cholesterol/metabolism , Cholesterol Esters/metabolism , Risk Factors
6.
J Pers Med ; 13(5)2023 Apr 28.
Article En | MEDLINE | ID: mdl-37240924

Breast cancer (BC) is the most common female cancer in terms of incidence and mortality worldwide. Tamoxifen (Nolvadex) is a widely prescribed, oral anti-estrogen drug for the hormonal treatment of estrogen-receptor-positive BC, which represents 70% of all BC subtypes. This review assesses the current knowledge on the molecular pharmacology of tamoxifen in terms of its anticancer and chemo-preventive actions. Due to the importance of vitamin E compounds, which are widely taken as a supplementary dietary component, the review focuses only on the potential importance of vitamin E in BC chemo-prevention. The chemo-preventive and onco-protective effects of tamoxifen combined with the potential effects of vitamin E can alter the anticancer actions of tamoxifen. Therefore, methods involving an individually designed, nutritional intervention for patients with BC warrant further consideration. These data are of great importance for tamoxifen chemo-prevention strategies in future epidemiological studies.

8.
Autophagy ; 19(3): 1036-1038, 2023 03.
Article En | MEDLINE | ID: mdl-36063487

Normal cells secrete small extracellular vesicles (sEV), containing exosomes and/or ectosomes, which play a beneficial role in monitoring tissue integrity and immune response, whereas cancer cells constitutively secrete sEV, which contribute to inhibit the immune defenses and promote tumor progression and aggressiveness. Therefore, there is a great interest in reprograming tumor sEV functions toward normal ones. We hypothesized that this could be realized by inducing tumor cell re-differentiation with dendrogenin A (DDA), an endogenous oxysterol and a ligand of NR1 H/LXR (nuclear receptor subfamily 1 group H). At low doses, DDA induces tumor cell differentiation, tumor growth inhibition and immune cell infiltration into tumors. At high doses, DDA induces lethal macroautophagy/autophagy in tumors by increasing LC3 expression at the mRNA and protein level, through NR1H2/LXRß. In the present study, we showed that low doses of DDA re-differentiate tumor cells by interacting with NR1H2. This results in an increased formation of multivesicular bodies (MVB) in tumor cells and an enhanced secretion of LC3-II-associated exosome-enriched sEV, with immune and anticancer properties. This study highlights the original LC3-II-associated exosome secretory pathway driven by the DDA-NR1H2 complex and paves the way to the development of new therapeutic strategies against pro-tumor exosomes.


Exosomes , Neoplasms , Humans , Liver X Receptors/metabolism , Exosomes/metabolism , Secretory Pathway , Autophagy , Neoplasms/metabolism
10.
J Extracell Vesicles ; 11(4): e12211, 2022 04.
Article En | MEDLINE | ID: mdl-35411723

Tumour cells are characterized by having lost their differentiation state. They constitutively secrete small extracellular vesicles (sEV) called exosomes when they come from late endosomes. Dendrogenin A (DDA) is an endogenous tumour suppressor cholesterol-derived metabolite. It is a new class of ligand of the nuclear Liver X receptors (LXR) which regulate cholesterol homeostasis and immunity. We hypothesized that DDA, which induces tumour cell differentiation, inhibition of tumour growth and immune cell infiltration into tumours, could functionally modify sEV secreted by tumour cells. Here, we have shown that DDA differentiates tumour cells by acting on the LXRß. This results in an increased production of sEV (DDA-sEV) which includes exosomes. The DDA-sEV secreted from DDA-treated cells were characterized for their content and activity in comparison to sEV secreted from control cells (C-sEV). DDA-sEV were enriched, relatively to C-sEV, in several proteins and lipids such as differentiation antigens, "eat-me" signals, lipidated LC3 and the endosomal phospholipid bis(monoacylglycero)phosphate, which stimulates dendritic cell maturation and a Th1 T lymphocyte polarization. Moreover, DDA-sEV inhibited the growth of tumours implanted into immunocompetent mice compared to control conditions. This study reveals a pharmacological control through a nuclear receptor of exosome-enriched tumour sEV secretion, composition and immune function. Targeting the LXR may be a novel way to reprogram tumour cells and sEV to stimulate immunity against cancer.


Exosomes , Neoplasms , Animals , Cholestanols , Cholesterol/metabolism , Exosomes/metabolism , Imidazoles , Liver X Receptors/metabolism , Mice , Neoplasms/drug therapy
11.
Ageing Res Rev ; 77: 101615, 2022 05.
Article En | MEDLINE | ID: mdl-35351610

Delaying and even reversing ageing is a major public health challenge with a tremendous potential to postpone a plethora of diseases including cancer, metabolic syndromes and neurodegenerative disorders. A better understanding of ageing as well as the development of innovative anti-ageing strategies are therefore an increasingly important field of research. Several biological processes including inflammation, proteostasis, epigenetic, oxidative stress, stem cell exhaustion, senescence and stress adaptive response have been reported for their key role in ageing. In this review, we describe the relationships that have been established between cholesterol homeostasis, in particular at the level of oxysterols, and ageing. Initially considered as harmful pro-inflammatory and cytotoxic metabolites, oxysterols are currently emerging as an expanding family of fine regulators of various biological processes involved in ageing. Indeed, depending of their chemical structure and their concentration, oxysterols exhibit deleterious or beneficial effects on inflammation, oxidative stress and cell survival. In addition, stem cell differentiation, epigenetics, cellular senescence and proteostasis are also modulated by oxysterols. Altogether, these data support the fact that ageing is influenced by an oxysterol profile. Further studies are thus required to explore more deeply the impact of the "oxysterome" on ageing and therefore this cholesterol metabolic pathway constitutes a promising target for future anti-ageing interventions.


Oxysterols , Aging/metabolism , Cholesterol , Humans , Inflammation , Oxidative Stress , Oxysterols/metabolism
12.
Biochem Pharmacol ; 196: 114731, 2022 02.
Article En | MEDLINE | ID: mdl-34407453

Cholesterol esterification proteins Sterol-O acyltransferases (SOAT) 1 and 2 are emerging prognostic markers in many cancers. These enzymes utilise fatty acids conjugated to coenzyme A to esterify cholesterol. Cholesterol esterification is tightly regulated and enables formation of lipid droplets that act as storage organelles for lipid soluble vitamins and minerals, and as cholesterol reservoirs. In cancer, this provides rapid access to cholesterol to maintain continual synthesis of the plasma membrane. In this systematic review and meta-analysis, we summarise the current depth of understanding of the role of this metabolic pathway in pan-cancer development. A systematic search of PubMed, Scopus, Web of Science, and Cochrane Library for preclinical studies identified eight studies where cholesteryl ester concentrations were compared between tumour and adjacent-normal tissue, and 24 studies where cholesterol esterification was blocked by pharmacological or genetic approaches. Tumour tissue had a significantly greater concentration of cholesteryl esters than non-tumour tissue (p < 0.0001). Pharmacological or genetic inhibition of SOAT was associated with significantly smaller tumours of all types (p ≤ 0.002). SOAT inhibition increased tumour apoptosis (p = 0.007), CD8 + lymphocyte infiltration and cytotoxicity (p ≤ 0.05), and reduced proliferation (p = 0.0003) and metastasis (p < 0.0001). Significant risk of publication bias was found and may have contributed to a 32% overestimation of the meta-analysed effect size. Avasimibe, the most frequently used SOAT inhibitor, was effective at doses equivalent to those previously reported to be safe and tolerable in humans. This work indicates that SOAT inhibition should be explored in clinical trials as an adjunct to existing anti-neoplastic agents.


Anticholesteremic Agents/administration & dosage , Cholesterol/genetics , Cholesterol/metabolism , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism , Tumor Burden/drug effects , Animals , Antineoplastic Agents/administration & dosage , Clinical Trials as Topic/methods , Esterification/drug effects , Esterification/physiology , Humans , Organic Anion Transporters/antagonists & inhibitors , Tumor Burden/physiology , Urea/administration & dosage , Urea/analogs & derivatives , Xenograft Model Antitumor Assays/methods
15.
Br J Pharmacol ; 178(16): 3248-3260, 2021 08.
Article En | MEDLINE | ID: mdl-32696532

Metabolic pathways have emerged as cornerstones in carcinogenic deregulation providing new therapeutic strategies for cancer management. Recently, a new branch of cholesterol metabolism has been discovered involving the biochemical transformation of 5,6-epoxycholesterols (5,6-ECs). The 5,6-ECs are metabolized in breast cancers to the tumour promoter oncosterone whereas, in normal breast tissue, they are metabolized to the tumour suppressor metabolite, dendrogenin A (DDA). Blocking the mitogenic and invasive potential of oncosterone will present new opportunities for breast cancer treatment. The reactivation of DDA biosynthesis, or its use as a drug, represents promising therapeutic approaches such as DDA-deficiency complementation, activation of breast cancer cell re-differentiation and breast cancer chemoprevention. This review presents current knowledge of the 5,6-EC metabolic pathway in breast cancer, focusing on the 5,6-EC metabolic enzymes ChEH and HSD11B2 and on 5,6-EC metabolite targets, the oxysterol receptor (LXRß) and the glucocorticoid receptor. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.


Breast Neoplasms , Breast Neoplasms/drug therapy , Cell Proliferation , Cholesterol/analogs & derivatives , Female , Humans , Metabolic Networks and Pathways
16.
Cancers (Basel) ; 12(10)2020 Oct 12.
Article En | MEDLINE | ID: mdl-33053669

Dendrogenin A (DDA), a mammalian cholesterol metabolite with tumor suppressor properties, has recently been shown to exhibit strong anti-leukemic activity in acute myeloid leukemia (AML) cells by triggering lethal autophagy. Here, we demonstrated that DDA synergistically enhanced the toxicity of anthracyclines in AML cells but not in normal hematopoietic cells. Combination index of DDA treatment with either daunorubicin or idarubicin indicated a strong synergism in KG1a, KG1 and MV4-11 cell lines. This was confirmed in vivo using immunodeficient mice engrafted with MOLM-14 cells as well as in a panel of 20 genetically diverse AML patient samples. This effect was dependent on Liver X Receptor ß, a major target of DDA. Furthermore, DDA plus idarubicin strongly increased p53BP1 expression and the number of DNA strand breaks in alkaline comet assays as compared to idarubicin alone, whereas DDA alone was non-genotoxic. Mechanistically, DDA induced JNK phosphorylation and the inhibition of AKT phosphorylation, thereby maximizing DNA damage induced by idarubicin and decreasing DNA repair. This activated autophagic cell death machinery in AML cells. Overall, this study shows that the combination of DDA and idarubicin is highly promising and supports clinical trials of dendrogenin A in AML patients.

17.
Cancers (Basel) ; 12(7)2020 Jun 29.
Article En | MEDLINE | ID: mdl-32610562

Dendrogenin A (DDA) is a mammalian cholesterol metabolite that displays potent antitumor properties on acute myeloid leukemia (AML). DDA triggers lethal autophagy in cancer cells through a biased activation of the oxysterol receptor LXRß, and the inhibition of a sterol isomerase. We hypothesize that DDA could potentiate the activity of an anticancer drug acting through a different molecular mechanism, and conducted in vitro and in vivo combination tests on AML cell lines and patient primary tumors. We report here results from tests combining DDA with antimetabolite cytarabine (Ara-C), one of the main drugs used for AML treatment worldwide. We demonstrated that DDA potentiated and sensitized AML cells, including primary patient samples, to Ara-C in vitro and in vivo. Mechanistic studies revealed that this sensitization was LXRß-dependent and was due to the activation of lethal autophagy. This study demonstrates a positive in vitro and in vivo interaction between DDA and Ara-C, and supports the clinical evaluation of DDA in combination with Ara-C for the treatment of AML.

19.
J Steroid Biochem Mol Biol ; 194: 105447, 2019 11.
Article En | MEDLINE | ID: mdl-31415823

Dendrogenin A (DDA) is a newly-discovered steroidal alkaloid, which remains to date the first ever found in mammals. DDA is a cholesterol metabolites that induces cancer cell differentiation and death in vitro and in vivo, and thus behave like a tumor suppressor metabolite. Preliminary studies performed on 10 patients with estrogen receptor positive breast cancers (ER(+)BC) showed a strong decrease in DDA levels between normal matched tissue and tumors. This suggests that a deregulation on DDA metabolism is associated with breast carcinogenesis. To further investigate DDA metabolism on large cohorts of patients we have developed an ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS) procedure for the quantification of DDA in liquid and in solid tissues. This method enabled the identification of DDA analogues such as its geometric isomer C17 and dendrogenin B (C26) in human samples showing that other 5,6α-epoxycholesterol conjugation products with biogenic amines exist as endogenous metabolites . We report here the first complete method of quantification of DDA in liquid and solid tissues using hydrophilic interaction liquid chromatography (HILIC). Two different methods of extraction using either a Bligh and Dyer organic extraction or protein precipitation were successfully applied to quantify DDA in solid and liquid tissues. The protein precipitation method was the fastest. The fact that this method is automatable opens up possibilities to study DDA metabolism in large cohorts of patients.


Cholestanols/analysis , Imidazoles/analysis , Breast/metabolism , Breast Neoplasms/metabolism , Cholestanols/metabolism , Chromatography, Liquid/methods , Female , Humans , Imidazoles/metabolism
20.
J Steroid Biochem Mol Biol ; 192: 105390, 2019 09.
Article En | MEDLINE | ID: mdl-31170473

Dendrogenin A (DDA) is a tumor suppressor mammalian cholesterol-derived metabolite and a new class of ligand of the Liver X receptor (LXR), which displays tumor cell differentiation. In human MCF7 breast adenocarcinoma cells, DDA-induced cell differentiation was associated with an increased accumulation of neutral lipids and proteins found in milk indicating that DDA re-activates some functions of lactating cells. Active iodide transport occurs in the normal lactating mammary cells through the sodium/iodide symporter (NIS) and iodide (I) is secreted into milk to be used by the nursing newborn for thyroid hormones biosynthesis. In the present study, we assessed whether DDA may induce other characteristic of lactating cells such as NIS expression and iodine uptake in MCF7 breast cancer cells and extended this study to the papillary B-CPAP and undifferentiated anaplastic 8505c thyroid cancer cells. Moreover, we evaluated DDA impact on the expression of thyroid specific proteins involved in thyroid hormone biogenesis. We report here that DDA induces NIS expression in MCF7 cells and significantly increases the uptake of 131-I by acting through the LXR. In addition, DDA induces phenotypic, molecular and functional characteristics of redifferentiation in the two human thyroid carcinoma cell lines and the uptake of 131-I in the undifferentiated 8505c cells was associated with a strong expression of all the specific proteins involved in thyroid hormone biosynthesis, TSH receptor, thyroperoxidase and thyroglobulin. 131-I incorporation in the 8505c cells was stimulated by DDA as well as by the synthetic LXR ligand, GW3965. Together these data show that the re-differentiation of breast and thyroid cancer cells by DDA, is associated with the recovery of functional NIS expression and involves an LXR-dependent mechanism. These results open new avenues of research for the diagnosis of thyroid cancers as well as the development of new therapeutic approaches for radioiodine refractory thyroid cancers.


Adenocarcinoma/drug therapy , Breast Neoplasms/drug therapy , Cholestanols/pharmacology , Imidazoles/pharmacology , Iodine Radioisotopes/metabolism , Thyroid Neoplasms/drug therapy , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Autoantigens/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Cycle , Cell Proliferation , Female , Humans , Iodide Peroxidase/metabolism , Iron-Binding Proteins/metabolism , Mice , Mice, Nude , Receptors, Thyrotropin/metabolism , Symporters/metabolism , Thyroglobulin/metabolism , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
...