Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Robot ; 9(91): eadi2377, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38865477

ABSTRACT

Repetitive overhead tasks during factory work can cause shoulder injuries resulting in impaired health and productivity loss. Soft wearable upper extremity robots have the potential to be effective injury prevention tools with minimal restrictions using soft materials and active controls. We present the design and evaluation of a portable inflatable shoulder wearable robot for assisting industrial workers during shoulder-elevated tasks. The robot is worn like a shirt with integrated textile pneumatic actuators, inertial measurement units, and a portable actuation unit. It can provide up to 6.6 newton-meters of torque to support the shoulder and cycle assistance on and off at six times per minute. From human participant evaluations during simulated industrial tasks, the robot reduced agonist muscle activities (anterior, middle, and posterior deltoids and biceps brachii) by up to 40% with slight changes in joint angles of less than 7% range of motion while not increasing antagonistic muscle activity (latissimus dorsi) in current sample size. Comparison of controller parameters further highlighted that higher assistance magnitude and earlier assistance timing resulted in statistically significant muscle activity reductions. During a task circuit with dynamic transitions among the tasks, the kinematics-based controller of the robot showed robustness to misinflations (96% true negative rate and 91% true positive rate), indicating minimal disturbances to the user when assistance was not required. A preliminary evaluation of a pressure modulation profile also highlighted a trade-off between user perception and hardware demands. Finally, five automotive factory workers used the robot in a pilot manufacturing area and provided feedback.


Subject(s)
Equipment Design , Range of Motion, Articular , Robotics , Shoulder , Torque , Wearable Electronic Devices , Humans , Robotics/instrumentation , Biomechanical Phenomena , Male , Shoulder/physiology , Adult , Range of Motion, Articular/physiology , Muscle, Skeletal/physiology , Electromyography/instrumentation , Industry/instrumentation , Shoulder Injuries/prevention & control , Female , Young Adult , Task Performance and Analysis , Shoulder Joint/physiology , Exoskeleton Device
2.
Sensors (Basel) ; 21(21)2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34770647

ABSTRACT

Recovery of therapeutic or functional ambulatory capacity in patients with rotator cuff injury is a primary goal of rehabilitation. Wearable powered exoskeletons allow patients to perform repetitive practice with large movements to maximize recovery, even immediately after the acute event. The aim of this paper is to describe the usability, acceptability and acceptance of a hybrid exoskeleton for upper-limb passive rehabilitation using the System Usability Scale (SUS) questionnaire. This equipment, called ExoFlex, is defined as a hybrid exoskeleton since it is made up of rigid and soft components. The exoskeleton mechanical description is presented along with its control system and the way motion is structured in rehabilitation sessions. Seven patients (six women and one man) have participated in the evaluation of this equipment, which are in the range of 50 to 79 years old. Preliminary evidence of the acceptance and usability by both patients and clinicians are very promising, obtaining an average score of 80.71 in the SUS test, as well as good results in a questionnaire that evaluates the clinicians' perceived usability of ExoFlex.


Subject(s)
Exoskeleton Device , Stroke Rehabilitation , Aged , Female , Humans , Male , Middle Aged , Movement , Upper Extremity
3.
Soft Robot ; 7(3): 370-385, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31905105

ABSTRACT

This article describes the performance of a flexible resistive sensor network to track shoulder motion. This system monitors every gesture of the human shoulder in its range of motion except rotations around the longitudinal axis of the arm. In this regard, the design considers the movement of the glenohumeral, acromioclavicular, sternoclavicular, and scapulothoracic joints. The solution presented in this work considers several sensor configurations and compares its performance with a set of inertial measurement units (IMUs). These devices have been put together in a shoulder suit with Optitrack visual markers in order to be used as pose ground truth. Optimal configurations of flexible resistive sensors, in terms of accuracy requirements and number of sensors, have been obtained by applying principal component analysis techniques. The data provided by each configuration are then mapped onto the shoulder pose by using neural network algorithms. According to the results shown in this article, a set of flexible resistive sensors can be an adequate alternative to IMUs for multiaxial shoulder pose tracking in open spaces. Furthermore, the system presented can be easily embedded in fabric or wearable devices without obstructing the user's motion.


Subject(s)
Shoulder Joint , Shoulder , Humans , Motion , Range of Motion, Articular , Upper Extremity
SELECTION OF CITATIONS
SEARCH DETAIL
...