Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Trials ; 25(1): 481, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014430

ABSTRACT

BACKGROUND: In standard weaning from mechanical ventilation, a successful spontaneous breathing test (SBT) consisting of 30 min 8 cmH2O pressure-support ventilation (PSV8) without positive end-expiratory pressure (PEEP) is followed by extubation with continuous suctioning; however, these practices might promote derecruitment. Evidence supports the feasibility and safety of extubation without suctioning. Ultrasound can assess lung aeration and respiratory muscles. We hypothesize that weaning aiming to preserve lung volume can yield higher rates of successful extubation. METHODS: This multicenter superiority trial will randomly assign eligible patients to receive either standard weaning [SBT: 30-min PSV8 without PEEP followed by extubation with continuous suctioning] or lung-volume-preservation weaning [SBT: 30-min PSV8 + 5 cmH2O PEEP followed by extubation with positive pressure without suctioning]. We will compare the rates of successful extubation and reintubation, ICU and hospital stays, and ultrasound measurements of the volume of aerated lung (modified lung ultrasound score), diaphragm and intercostal muscle thickness, and thickening fraction before and after successful or failed SBT. Patients will be followed for 90 days after randomization. DISCUSSION: We aim to recruit a large sample of representative patients (N = 1600). Our study cannot elucidate the specific effects of PEEP during SBT and of positive pressure during extubation; the results will show the joint effects derived from the synergy of these two factors. Although universal ultrasound monitoring of lungs, diaphragm, and intercostal muscles throughout weaning is unfeasible, if derecruitment is a major cause of weaning failure, ultrasound may help clinicians decide about extubation in high-risk and borderline patients. TRIAL REGISTRATION: The Research Ethics Committee (CEIm) of the Fundació Unió Catalana d'Hospitals approved the study (CEI 22/67 and 23/26). Registered at ClinicalTrials.gov in August 2023. Identifier: NCT05526053.


Subject(s)
Airway Extubation , Lung , Multicenter Studies as Topic , Positive-Pressure Respiration , Ventilator Weaning , Humans , Ventilator Weaning/methods , Positive-Pressure Respiration/methods , Positive-Pressure Respiration/adverse effects , Lung/physiopathology , Lung/diagnostic imaging , Lung Volume Measurements , Ultrasonography , Treatment Outcome , Male , Time Factors , Female , Adult , Middle Aged , Respiration, Artificial/methods , Randomized Controlled Trials as Topic , Aged , Suction/methods , Equivalence Trials as Topic
2.
Article in English | MEDLINE | ID: mdl-38082854

ABSTRACT

Respiratory patterns present great variability, both in healthy subjects and in patients with different diseases and forms of nasal, oral, superficial or deep breathing. The analysis of this variability depends, among others, on the device used to record the signals that describe these patterns. In this study, we propose multivariable regression models to estimate tidal volume (VT) considering different breathing patterns. Twenty-three healthy volunteers underwent continuous multisensor recordings considering different modes of breathing. Respiratory flow and volume signals were recorded with a pneumotachograph and thoracic and abdominal respiratory inductive plethysmographic bands. Several respiratory parameters were extracted from the volume signals, such as inspiratory and expiratory areas (Areains, Areaexp), maximum volume relative to the cycle start and end (VTins, VTexp), inspiratory and expiratory time (Tins, Texp), cycle duration (Ttot), and normalized parameters of clinical interest. The parameters with the greatest individual predictive power were combined using multivariable models to estimate VT. Their performance were quantified in terms of determination coefficient (R2), relative error (ER) and interquartile range (IQR). Using only three parameters, the results obtained for the thoracic band (VTexp, Ttot, Areaexp) were better than those obtained from the abdominal band (VTexp, Tins, Areains) with R2 = 0.94 (IQR: 0.07); ER = 6.99 (IQR: 6.12) vs R2 = 0.91 (IQR: 0.09), ER = 8.70 (IQR: 4.62). Overall performance increased to R2 = 0.97 (IQR: 0.02) and ER = 4.60 (IQR: 3.68) when parameters from the different bands were combined, further improving when was applied to segments with different inspiration-expiration patterns. In particular, the nose-nose ER = 1.39 (IQR: 0.73), nose-mouth ER = 2.11 (IQR: 1.23) and mouth-mouth ER = 2.29 (IQR: 1.44) patterns showed the best results compared to those obtained for basal, shallow and deep breathing.Clinical relevance- Respiratory pattern variability can be described using multivariable regression model for tidal volume.


Subject(s)
Respiration , Respiratory Rate , Humans , Tidal Volume , Nose
SELECTION OF CITATIONS
SEARCH DETAIL