Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 60
1.
BMC Psychol ; 12(1): 243, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38685111

BACKGROUND: The COVID-19 pandemic substantially affected the lives of persons with inherited neuromuscular disorders (INMD), causing disruption in clinical and support services. While several studies have investigated mental health, distress and psychosocial resources in the general population during the pandemic, little is known about the experience of persons with INMD. METHODS: This study was aimed to fill this gap by jointly investigating both psychopathological symptoms and psychosocial resources - specifically, resilience and perceived social support - among persons with INMD during the pandemic, taking into account demographic and clinical factors. Between April and December 2020, 59 participants with INMD (aged 15-59, 71.2% M) completed a questionnaire collecting demographic and clinical data, the Multidimensional Scale of Perceived Social Support, the Resilience Scale for Adults, and the Achenbach System of Empirically Based Assessment. RESULTS: Overall, participants showed good levels of resilience and perceived social support. A minority of participants reported clinically relevant psychopathological symptoms, 28.81% for anxiety and depression. Most psychopathological symptoms were negatively correlated with resilience (-0.347 < r < - .420), but not significantly associated with social support. Consistent with previous studies, regression analyses highlighted that participants with Duchenne muscular dystrophy were more prone to report anxious and depressive symptoms (B = 1.748, p = .028, OR = 5.744), and participants with myotonic dystrophy, attention problems (B = 2.339, p = .006, OR = 10.376). Resilience emerged as a potential predictor of lower anxious-depressive symptoms (B=-1.264, p = .012, OR = 0.283). CONCLUSIONS: The findings suggest the importance to investigate psychosocial resources in addition to psychopathology among persons with INMD, and to design interventions supporting resilience as a protective factor for mental health promotion.


COVID-19 , Neuromuscular Diseases , Resilience, Psychological , Social Support , Humans , COVID-19/psychology , COVID-19/epidemiology , Adult , Male , Female , Middle Aged , Neuromuscular Diseases/psychology , Neuromuscular Diseases/epidemiology , Adolescent , Young Adult , Anxiety/psychology , Anxiety/epidemiology , Depression/psychology , Depression/epidemiology , Surveys and Questionnaires , SARS-CoV-2
4.
Ann Neurol ; 94(6): 1126-1135, 2023 Dec.
Article En | MEDLINE | ID: mdl-37695206

OBJECTIVE: The aim of this study was to provide an overview of the clinical phenotypes associated with 4 SMN2 copies. METHODS: Clinical phenotypes were analyzed in all the patients with 4 SMN2 copies as part of a nationwide effort including all the Italian pediatric and adult reference centers for spinal muscular atrophy (SMA). RESULTS: The cohort includes 169 patients (102 men and 67 women) with confirmed 4 SMN2 copies (mean age at last follow-up = 36.9 ± 19 years). Six of the 169 patients were presymptomatic, 8 were classified as type II, 145 as type III (38 type IIIA and 107 type IIIB), and 8 as type IV. The remaining 2 patients were asymptomatic adults identified because of a familial case. The cross-sectional functional data showed a reduction of scores with increasing age. Over 35% of the type III and 25% of the type IV lost ambulation (mean age = 26.8 years ± 16.3 SD). The risk of loss of ambulation was significantly associated with SMA type (p < 0.0001), with patients with IIIB and IV less likely to lose ambulation compared to type IIIA. There was an overall gender effect with a smaller number of women and a lower risk for women to lose ambulation. This was significant in the adult (p = 0.009) but not in the pediatric cohort (p = 0.43). INTERPRETATION: Our results expand the existing literature on natural history of 4 SMN2 copies confirming the variability of phenotypes in untreated patients, ranging from type II to type IV and an overall reduction of functional scores with increasing age. ANN NEUROL 2023;94:1126-1135.


Muscular Atrophy, Spinal , Male , Adult , Child , Humans , Female , Adolescent , Young Adult , Middle Aged , Cross-Sectional Studies , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/genetics , Phenotype , Walking , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 2 Protein/genetics
5.
J Neurol ; 270(11): 5561-5568, 2023 Nov.
Article En | MEDLINE | ID: mdl-37540277

BACKGROUND: Sleep abnormalities have been reported in Charcot-Marie-Tooth disease (CMT), but data are scanty. We investigated their presence and correlation in a large CMT patients' series. METHODS: Epworth Sleepiness Scale (ESS) and Pittsburgh Sleep Quality Index (PSQI) were administered to CMT patients of the Italian registry and controls. ESS score > 10 indicated abnormal daytime somnolence, PSQI score > 5 bad sleep quality. We analyzed correlation with disease severity and characteristics, Hospital Anxiety and Depression Scale (HADS), Modified Fatigue Impact Scale (MFIS), Body Mass Index, drug use. RESULTS: ESS and PSQI questionnaires were filled by 257 and 253 CMT patients, respectively, and 58 controls. Median PSQI score was higher in CMT patients than controls (6 vs 4, p = 0.006), with no difference for ESS score. Abnormal somnolence and poor sleep quality occurred in 23% and 56% of patients; such patients had more frequently anxiety/depression, abnormal fatigue, and positive sensory symptoms than those with normal ESS/PSQI. Moreover, patients with PSQI score > 5 had more severe disease (median CMT Examination Score, CMTES, 8 vs 6, p = 0.006) and more frequent use of anxiolytic/antidepressant drugs (29% vs 7%, p < 0.001). CONCLUSIONS: Bad sleep quality and daytime sleepiness are frequent in CMT and correlated with anxiety, depression and fatigue, confirming that different components affect sleep. Sleep disorders, such as sleep apnea and restless leg syndrome, not specifically investigated here, are other factors known to impact on sleep quality and somnolence. CMT patients' management must include sleep behavior assessment and evaluation of its correlated factors, including general distress and fatigue.


Charcot-Marie-Tooth Disease , Disorders of Excessive Somnolence , Sleep Wake Disorders , Humans , Sleep Quality , Sleepiness , Charcot-Marie-Tooth Disease/complications , Disorders of Excessive Somnolence/etiology , Sleep , Fatigue/etiology , Surveys and Questionnaires , Sleep Wake Disorders/epidemiology , Sleep Wake Disorders/etiology
6.
Eur J Neurol ; 30(8): 2461-2470, 2023 08.
Article En | MEDLINE | ID: mdl-37170966

BACKGROUND AND PURPOSE: Data are reported from the Italian CMT Registry. METHODS: The Italian CMT Registry is a dual registry where the patient registers and chooses a reference center where the attending clinician collects a minimal dataset of information and administers the Charcot-Marie-Tooth (CMT) Examination/Neuropathy Score. Entered data are encrypted. RESULTS: Overall, 1012 patients had registered (535 females) and 711 had received a genetic diagnosis. Demyelinating CMT (65.3%) was more common than axonal CMT2 (24.6%) and intermediate CMT (9.0%). The PMP22 duplication was the most frequent mutation (45.2%), followed by variants in GJB1 and MPZ (both ~10%) and MFN2 (3.3%) genes. A relatively high mutation rate in some "rare" genes (HSPB1 1.6%, NEFL 1.5%, SH3TC2 1.5%) and the presence of multiple mutation clusters across Italy was observed. CMT4A was the most disabling type, followed by CMT4C and CMT1E. Disease progression rate differed depending on the CMT subtype. Foot deformities and walking difficulties were the main features. Shoe inserts and orthotic aids were used by almost one-half of all patients. Scoliosis was present in 20% of patients, especially in CMT4C. Recessive forms had more frequently walking delay, walking support need and wheelchair use. Hip dysplasia occurred in early-onset CMT. CONCLUSIONS: The Italian CMT Registry has proven to be a powerful data source to collect information about epidemiology and genetic distribution, clinical features and disease progression of CMT in Italy and is a useful tool for recruiting patients in forthcoming clinical trials.


Charcot-Marie-Tooth Disease , Female , Humans , Charcot-Marie-Tooth Disease/epidemiology , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/diagnosis , Mutation , Disease Progression , Italy/epidemiology
7.
PNAS Nexus ; 2(4): pgad083, 2023 Apr.
Article En | MEDLINE | ID: mdl-37038437

LAMA2-related muscular dystrophy (LAMA2 MD or MDC1A) is a devastating congenital muscular dystrophy that is caused by mutations in the LAMA2 gene encoding laminin-α2, the long chain of several heterotrimeric laminins. Laminins are essential components of the extracellular matrix that interface with underlying cells. The pathology of LAMA2 MD patients is dominated by an early-onset, severe muscular dystrophy that ultimately leads to death by respiratory insufficiency. However, pathology in nonmuscle tissues has been described. Prior work in the dyW /dyW mouse model for LAMA2 MD has shown that two linker proteins, mini-agrin and αLNNd, when expressed in skeletal muscle fibers, greatly increase survival from a few months up to more than 2 years. However, the restoration of skeletal muscle function accentuates the pathology in nonmuscle tissue in dyW /dyW mice, first and foremost in the peripheral nerve resulting in paralysis of the hind limbs. We now show that the expression of the two linker proteins in all tissues ameliorates the muscular dystrophy and prevents the appearance of the hind limb paralysis. Importantly, the same ameliorating effect of the linker proteins was seen in dy3K /dy3K mice, which represent the most severe mouse model of LAMA2 MD. In summary, these data show that the two linker proteins can compensate the loss of laminin-α2 in muscle and peripheral nerve, which are the two organs most affected in LAMA2 MD. These results are of key importance for designing appropriate expression constructs for mini-agrin and αLNNd to develop a gene therapy for LAMA2 MD patients.

8.
J Neurol ; 270(1): 394-401, 2023 Jan.
Article En | MEDLINE | ID: mdl-36114297

BACKGROUND: There is little information about neuropsychiatric comorbidities in Charcot-Marie-Tooth disease (CMT). We assessed frequency of anxiety, depression, and general distress in CMT. METHODS: We administered online the Hospital Anxiety-Depression Scale (HADS) to CMT patients of the Italian registry and controls. HADS-A and HADS-D scores ≥ 11 defined the presence of anxiety/depression and HADS total score (HADS-T) ≥ 22 of general distress. We analysed correlation with disease severity and clinical characteristics, use of anxiolytics/antidepressants and analgesic/anti-inflammatory drugs. RESULTS: We collected data from 252 CMT patients (137 females) and 56 controls. CMT patient scores for anxiety (mean ± standard deviation, 6.7 ± 4.8), depression (4.5 ± 4.0), and general distress (11.5 ± 8.1) did not differ from controls and the Italian population. However, compared to controls, the percentages of subjects with depression (10% vs 2%) and general distress (14% vs 4%) were significantly higher in CMT patients. We found no association between HADS scores and disease duration or CMT type. Patients with general distress showed more severe disease and higher rate of positive sensory symptoms. Depressed patients also had more severe disease. Nineteen percent of CMT patients took antidepressants/anxiolytics (12% daily) and 70% analgesic/anti-inflammatory drugs. Patients with anxiety, depression, and distress reported higher consumption of anxiolytics/antidepressants. About 50% of patients with depression and/or general distress did not receive any specific pharmacological treatment. CONCLUSIONS: An appreciable proportion of CMT patients shows general distress and depression. Both correlated with disease severity and consumption of antidepressants/anxiolytics, suggesting that the disease itself is contributing to general distress and depression.


Anti-Anxiety Agents , Charcot-Marie-Tooth Disease , Female , Humans , Charcot-Marie-Tooth Disease/complications , Charcot-Marie-Tooth Disease/epidemiology , Depression/epidemiology , Depression/diagnosis , Anti-Anxiety Agents/therapeutic use , Anxiety/epidemiology , Registries , Italy/epidemiology , Antidepressive Agents/therapeutic use
9.
Brain ; 146(3): 806-822, 2023 03 01.
Article En | MEDLINE | ID: mdl-36445400

Hereditary motor neuropathies (HMN) were first defined as a group of neuromuscular disorders characterized by lower motor neuron dysfunction, slowly progressive length-dependent distal muscle weakness and atrophy, without sensory involvement. Their cumulative estimated prevalence is 2.14/100 000 and, to date, around 30 causative genes have been identified with autosomal dominant, recessive,and X-linked inheritance. Despite the advances of next generation sequencing, more than 60% of patients with HMN remain genetically uncharacterized. Of note, we are increasingly aware of the broad range of phenotypes caused by pathogenic variants in the same gene and of the considerable clinical and genetic overlap between HMN and other conditions, such as Charcot-Marie-Tooth type 2 (axonal), spinal muscular atrophy with lower extremities predominance, neurogenic arthrogryposis multiplex congenita and juvenile amyotrophic lateral sclerosis. Considering that most HMN present during childhood, in this review we primarily aim to summarize key clinical features of paediatric forms, including recent data on novel phenotypes, to help guide differential diagnosis and genetic testing. Second, we describe newly identified causative genes and molecular mechanisms, and discuss how the discovery of these is changing the paradigm through which we approach this group of conditions.


Charcot-Marie-Tooth Disease , Muscular Atrophy, Spinal , Humans , Charcot-Marie-Tooth Disease/genetics , Muscular Atrophy, Spinal/genetics , Phenotype , Genetic Testing
10.
Eur J Neurol ; 30(3): 710-718, 2023 03.
Article En | MEDLINE | ID: mdl-36458502

BACKGROUND AND PURPOSE: Fatigue, a disabling symptom in many neuromuscular disorders, has been reported also in Charcot-Marie-Tooth disease (CMT). The presence of fatigue and its correlations in CMT was investigated. METHODS: The Modified Fatigue Impact Scale (MFIS) was administered to CMT patients from the Italian Registry and a control group. An MFIS score >38 indicated abnormal fatigue. The correlation with disease severity and clinical characteristics, the Hospital Anxiety and Depression Scale and Epworth Sleepiness Scale scores, and drug use was analysed. RESULTS: Data were collected from 251 CMT patients (136 women) and 57 controls. MFIS total (mean ± standard deviation 32 ± 18.3, median 33), physical (18.9 ± 9.7, 20) and psychosocial (2.9 ± 2.4, 3) scores in CMT patients were significantly higher than controls. Abnormal fatigue occurred in 36% of the patients who, compared to patients with normal scores, had more severe disease (median CMT Examination Score 9 vs. 7), more frequent use of foot orthotics (22% vs. 11%), need of support for walking (21% vs. 8%), hand disability (70% vs. 52%) and positive sensory symptoms (56% vs. 36%). Patients with abnormal fatigue had significantly increased frequency of anxiety/depression/general distress (Hospital Anxiety and Depression Scale), somnolence (Epworth Sleepiness Scale), obesity (body mass index ≥ 30) and use of anxiolytic/antidepressant or anti-inflammatory/analgesic drugs. CONCLUSIONS: Fatigue is a relevant symptom in CMT as 36% of our series had scores indicating abnormal fatigue. It correlated with disease severity but also with anxiety, depression, sleepiness and obesity, indicating different components in the generation of fatigue. CMT patients' management must include treatment of fatigue and of its different generators, including general distress, sleepiness and obesity.


Charcot-Marie-Tooth Disease , Humans , Female , Charcot-Marie-Tooth Disease/complications , Charcot-Marie-Tooth Disease/epidemiology , Sleepiness , Walking , Fatigue/epidemiology , Fatigue/etiology , Upper Extremity
11.
Eur J Neurol ; 30(2): 511-526, 2023 02.
Article En | MEDLINE | ID: mdl-36260368

BACKGROUND AND PURPOSE: Charcot-Marie-Tooth disease (CMT) is a heterogeneous group of disorders caused by mutations in at least 100 genes. However, approximately 60% of cases with axonal neuropathies (CMT2) still remain without a genetic diagnosis. We aimed at identifying novel disease genes responsible for CMT2. METHODS: We performed whole exome sequencing and targeted next generation sequencing panel analyses on a cohort of CMT2 families with evidence for autosomal recessive inheritance. We also performed functional studies to explore the pathogenetic role of selected variants. RESULTS: We identified rare, recessive variants in the MYO9B (myosin IX) gene in two families with CMT2. MYO9B has not yet been associated with a human disease. MYO9B is an unconventional single-headed processive myosin motor protein with signaling properties, and, consistent with this, our results indicate that a variant occurring in the MYO9B motor domain impairs protein expression level and motor activity. Interestingly, a Myo9b-null mouse has degenerating axons in sciatic nerves and optic nerves, indicating that MYO9B plays an essential role in both peripheral nervous system and central nervous system axons, respectively. The degeneration observed in the optic nerve prompted us to screen for MYO9B mutations in a cohort of patients with optic atrophy (OA). Consistent with this, we found compound heterozygous variants in one case with isolated OA. CONCLUSIONS: Novel or very rare variants in MYO9B are associated with CMT2 and isolated OA.


Charcot-Marie-Tooth Disease , Myosins , Animals , Humans , Mice , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/pathology , Mutation/genetics , Pedigree , Phenotype , Proteins , Sciatic Nerve/pathology , Myosins/genetics
12.
PLoS One ; 17(7): e0271681, 2022.
Article En | MEDLINE | ID: mdl-35905042

The aim of this study was to establish the possible effect of age, corticosteroid treatment and brain dystrophin involvement on motor function in young boys affected by Duchenne Muscular Dystrophy who were assessed using the North Star Ambulatory Assessment between the age of 4 and 7 years. The study includes 951 North Star assessments from 226 patients. Patients were subdivided according to age, to the site of mutation and therefore to the involvement of different brain dystrophin isoforms and to corticosteroids duration. There was a difference in the maximum North Star score achieved among patients with different brain dystrophin isoforms (p = 0.007). Patients with the involvement of Dp427, Dp140 and Dp71, had lower maximum NSAA scores when compared to those with involvement of Dp427 and Dp140 or of Dp427 only. The difference in the age when the maximum score was achieved in the different subgroups did not reach statistical significance. Using a linear regression model on all assessments we found that each of the three variables, age, site of mutation and corticosteroid treatment had an influence on the NSAA values and their progression over time. A second analysis, looking at 12-month changes showed that within this time interval the magnitude of changes was related to corticosteroid treatment but not to site of mutation. Our findings suggest that each of the considered variables appear to play a role in the progression of North Star scores in patients between the age of 4 and 7 years and that these should be carefully considered in the trial design of boys in this age range.


Dystrophin , Muscular Dystrophy, Duchenne , Adrenal Cortex Hormones/therapeutic use , Child , Child, Preschool , Dystrophin/genetics , Humans , Male , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/genetics , Mutation , Protein Isoforms/genetics
13.
J Neurol ; 269(9): 4884-4894, 2022 Sep.
Article En | MEDLINE | ID: mdl-35513612

Genetic modifiers of Duchenne muscular dystrophy (DMD) are variants located in genes different from the disease-causing gene DMD, but associated with differences in disease onset, progression, or response to treatment. Modifiers described so far have been tested mainly for associations with ambulatory function, while their effect on upper limb function, which is especially relevant for quality of life and independence in non-ambulatory patients, is unknown. We tested genotypes at several known modifier loci (SPP1, LTBP4, CD40, ACTN3) for association with Performance Upper Limb version 1.2 score in an Italian multicenter cohort, and with Brooke scale score in the Cooperative International Neuromuscular Group Duchenne Natural History Study (CINRG-DNHS), using generalized estimating equation (GEE) models of longitudinally collected data, with age and glucocorticoid treatment as covariates. CD40 rs1883832, previously linked to earlier loss of ambulation, emerged as a modifier of upper limb function, negatively affecting shoulder and distal domains of PUL (p = 0.023 and 0.018, respectively) in the Italian cohort, as well as of Brooke score (p = 0.018) in the CINRG-DNHS. These findings will be useful for the design and interpretation of clinical trials in DMD, especially for non-ambulatory populations.


Muscular Dystrophy, Duchenne , Actinin/genetics , Cohort Studies , Genotype , Humans , Muscular Dystrophy, Duchenne/genetics , Quality of Life , Upper Extremity
14.
J Clin Invest ; 132(3)2022 02 01.
Article En | MEDLINE | ID: mdl-34874913

Oligodendrocytes are the primary target of demyelinating disorders, and progressive neurodegenerative changes may evolve in the CNS. DNA damage and oxidative stress are considered key pathogenic events, but the underlying molecular mechanisms remain unclear. Moreover, animal models do not fully recapitulate human diseases, complicating the path to effective treatments. Here we report that mice with cell-autonomous deletion of the nuclear COP9 signalosome component CSN5 (JAB1) in oligodendrocytes develop DNA damage and defective DNA repair in myelinating glial cells. Interestingly, oligodendrocytes lacking JAB1 expression underwent a senescence-like phenotype that fostered chronic inflammation and oxidative stress. These mutants developed progressive CNS demyelination, microglia inflammation, and neurodegeneration, with severe motor deficits and premature death. Notably, blocking microglia inflammation did not prevent neurodegeneration, whereas the deletion of p21CIP1 but not p16INK4a pathway ameliorated the disease. We suggest that senescence is key to sustaining neurodegeneration in demyelinating disorders and may be considered a potential therapeutic target.


Aging/metabolism , COP9 Signalosome Complex/deficiency , Gene Deletion , Neurodegenerative Diseases/metabolism , Oligodendroglia/metabolism , Peptide Hydrolases/deficiency , Aging/genetics , Aging/pathology , Animals , COP9 Signalosome Complex/metabolism , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Mice , Mice, Knockout , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Oligodendroglia/pathology , Peptide Hydrolases/metabolism
15.
Front Genet ; 13: 1056114, 2022.
Article En | MEDLINE | ID: mdl-36685855

In 2002 we published an article describing a population of vessel-associated progenitors that we termed mesoangioblasts (MABs). During the past decade evidence had accumulated that during muscle development and regeneration things may be more complex than a simple sequence of binary choices (e.g., dorsal vs. ventral somite). LacZ expressing fibroblasts could fuse with unlabelled myoblasts but not among themselves or with other cell types. Bone marrow derived, circulating progenitors were able to participate in muscle regeneration, though in very small percentage. Searching for the embryonic origin of these progenitors, we identified them as originating at least in part from the embryonic aorta and, at later stages, from the microvasculature of skeletal muscle. While continuing to investigate origin and fate of MABs, the fact that they could be expanded in vitro (also from human muscle) and cross the vessel wall, suggested a protocol for the cell therapy of muscular dystrophies. We tested this protocol in mice and dogs before proceeding to the first clinical trial on Duchenne Muscular Dystrophy patients that showed safety but minimal efficacy. In the last years, we have worked to overcome the problem of low engraftment and tried to understand their role as auxiliary myogenic progenitors during development and regeneration.

17.
Front Genet ; 12: 702547, 2021.
Article En | MEDLINE | ID: mdl-34408774

This article will review myogenic cell transplantation for congenital and acquired diseases of skeletal muscle. There are already a number of excellent reviews on this topic, but they are mostly focused on a specific disease, muscular dystrophies and in particular Duchenne Muscular Dystrophy. There are also recent reviews on cell transplantation for inflammatory myopathies, volumetric muscle loss (VML) (this usually with biomaterials), sarcopenia and sphincter incontinence, mainly urinary but also fecal. We believe it would be useful at this stage, to compare the same strategy as adopted in all these different diseases, in order to outline similarities and differences in cell source, pre-clinical models, administration route, and outcome measures. This in turn may help to understand which common or disease-specific problems have so far limited clinical success of cell transplantation in this area, especially when compared to other fields, such as epithelial cell transplantation. We also hope that this may be useful to people outside the field to get a comprehensive view in a single review. As for any cell transplantation procedure, the choice between autologous and heterologous cells is dictated by a number of criteria, such as cell availability, possibility of in vitro expansion to reach the number required, need for genetic correction for many but not necessarily all muscular dystrophies, and immune reaction, mainly to a heterologous, even if HLA-matched cells and, to a minor extent, to the therapeutic gene product, a possible antigen for the patient. Finally, induced pluripotent stem cell derivatives, that have entered clinical experimentation for other diseases, may in the future offer a bank of immune-privileged cells, available for all patients and after a genetic correction for muscular dystrophies and other myopathies.

18.
Neurotherapeutics ; 18(4): 2156-2168, 2021 10.
Article En | MEDLINE | ID: mdl-34244926

Nerve development requires a coordinated sequence of events and steps to be accomplished for the generation of functional peripheral nerves to convey sensory and motor signals. Any abnormality during development may result in pathological structure and function of the nerve, which evolves in peripheral neuropathy. In this review, we will briefly describe different steps of nerve development while we will mostly focus on the molecular mechanisms involved in radial sorting of axons, one of these nerve developmental steps. We will summarize current knowledge of molecular pathways so far reported in radial sorting and their possible interactions. Finally, we will describe how disruption of these pathways may result in human neuropathies.


Peripheral Nervous System Diseases , Schwann Cells , Axons/physiology , Humans , Peripheral Nerves/metabolism , Peripheral Nerves/pathology , Schwann Cells/metabolism , Schwann Cells/pathology
19.
PLoS One ; 16(6): e0253882, 2021.
Article En | MEDLINE | ID: mdl-34170974

INTRODUCTION: The aim of this study was to report 36-month longitudinal changes using the North Star Ambulatory Assessment (NSAA) in ambulant patients affected by Duchenne muscular dystrophy amenable to skip exons 44, 45, 51 or 53. MATERIALS AND METHODS: We included 101 patients, 34 had deletions amenable to skip exon 44, 25 exon 45, 19 exon 51, and 28 exon 53, not recruited in any ongoing clinical trials. Five patients were counted to skip exon 51 and 53 since they had a single deletion of exon 52. RESULTS: The difference between subgroups (skip 44, 45, 51 and 53) was significant at 12 (p = 0.043), 24 (p = 0.005) and 36 months (p≤0.001). DISCUSSION: Mutations amenable to skip exons 53 and 51 had lower baseline values and more negative changes than the other subgroups while those amenable to skip exon 44 had higher scores both at baseline and at follow up. CONCLUSION: Our results confirm different progression of disease in subgroups of patients with deletions amenable to skip different exons. This information is relevant as current long term clinical trials are using the NSAA in these subgroups of mutations.


Dystrophin/genetics , Muscular Dystrophy, Duchenne/genetics , Mutation/genetics , Child , Disease Progression , Exons/genetics , Follow-Up Studies , Humans , Longitudinal Studies , Male , Men , Muscular Dystrophy, Duchenne/pathology , Severity of Illness Index , Walking/physiology
20.
J Peripher Nerv Syst ; 26(2): 177-183, 2021 06.
Article En | MEDLINE | ID: mdl-33960567

Mutations in Myelin Protein Zero (MPZ) cause CMT1B, the second leading cause of CMT1. Many of the >200 mutations cause neuropathy through a toxic gain of function by the mutant protein such as ER retention, activation of the Unfolded Protein Response (UPR) or disruption of myelin compaction. While there is extensive literature on the loss of function consequences of MPZ in heterozygous Mpz +/- null mice, there is little known of the consequences of MPZ haploinsufficiency in humans. We identified six patients from different families with p.Tyr68Ter or p.Asp104fs heterozygous mutations of MPZ that are predicted to cause a premature termination and nonsense mediated decay of the mutant allele. Five patients were evaluated in Milan and one in Iowa City; all should be haploinsufficient for MPZ. Patients were evaluated clinically and by electrophysiology. Sensory ataxia dominated the clinical presentation with only mild weakness present in five of the six patients. Symptoms presented in adulthood in all patients and only one individual had a CMTNSv2 >5. Deep tendon reflexes were absent in all patients. Patients with likely MPZ loss of function due to mutations that cause haplodeficiency in MPZ have a mild, predominantly large fiber sensory neuropathy that serves as a human equivalent to the neuropathy observed in heterozygous Mpz null mice. Successful therapeutic approaches in treating Mpz deficient mice may be candidates for trials in these and similar patients.


Charcot-Marie-Tooth Disease , Myelin P0 Protein/genetics , Animals , Charcot-Marie-Tooth Disease/genetics , Electrophysiological Phenomena , Humans , Mice , Mutation/genetics , Myelin Sheath
...