Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(3)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35162951

ABSTRACT

Immune-inflammatory activation impacts extracellular vesicles (EVs), including their miRNA cargo. There is evidence for changes in the EV miRNome in inflammation-associated neuropsychiatric disorders. This mouse study investigated: (1) effects of systemic lipopolysaccharide (LPS) and chronic social stress (CSS) on plasma EV miRNome; and (2) physiological, transcriptional, and behavioural effects of peripheral or central delivered LPS-activated EVs in recipient mice. LPS or CSS effects on the plasma EV miRNome were assessed by using microRNA sequencing. Recipient mice received plasma EVs isolated from LPS-treated or SAL-treated donor mice or vehicle only, either intravenously or into the nucleus accumbens (NAc), on three consecutive days. Bodyweight, spleen or NAc transcriptome and reward (sucrose) motivation were assessed. LPS and CSS increased the expression of 122 and decreased expression of 20 plasma EV miRNAs, respectively. Peripheral LPS-EVs reduced bodyweight, and both LPS-EVs and SAL-EVs increased spleen expression of immune-relevant genes. NAc-infused LPS-EVs increased the expression of 10 immune-inflammatory genes. Whereas motivation increased similarly across test days in all groups, the effect of test days was more pronounced in mice that received peripheral or central LPS-EVs compared with other groups. This study provides causal evidence that increased EV levels impact physiological and behavioural processes and are of potential relevance to neuropsychiatric disorders.


Subject(s)
Extracellular Vesicles/genetics , Gene Expression Profiling/methods , Lipopolysaccharides/adverse effects , MicroRNAs/genetics , Stress, Psychological/genetics , Animals , Extracellular Vesicles/drug effects , Gene Expression Regulation/drug effects , Male , Mice , Organ Size/drug effects , Pilot Projects , Sequence Analysis, RNA , Spleen/drug effects , Spleen/metabolism , Stress, Psychological/psychology
2.
Hypertension ; 54(5): 1115-22, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19770406

ABSTRACT

The influence of prenatal factors on the development of arterial hypertension has gained considerable interest in recent years. Prenatal dexamethasone exposure was found to induce hypertension and to alter nephron number and size in rodents and sheep. However, it is not clear whether these findings are applicable to nonhuman primates. Thus, we examined the effects of prenatal dexamethasone treatment on blood pressure (BP) and nephron number in marmoset monkeys. Fifty-two marmosets were allotted to 3 groups according to the gestational stage during which their mothers were exposed to oral 5-mg/kg dexamethasone for 7 days (gestation period: 20 weeks): (1) the early dexamethasone group at week 7; (2) the late dexamethasone group at week 13; and (3) the control group. BP was determined by telemetric (n=12) or cuff measurements (n=30), along with cystatin C, proteinuria, and body weight. All of the animals were euthanized at the age of 24 months, and glomerular number and volume were determined. Prenatal exposure to dexamethasone did not lead to a significant difference between the groups with regard to BP, kidney morphology and function, or body weight. BP correlated significantly with body weight, relative kidney weight, and mean glomerular volume and the body weight with the glomerular volume regardless of dexamethasone treatment. In conclusion, prenatal exposure to dexamethasone in marmosets does not, in contrast to other mammals studied, result in hypertension or changes in kidney morphology. Our data support the role of body weight as a predictor of elevated glomerular volume and BP development rather than prenatal dexamethasone exposure.


Subject(s)
Blood Pressure/physiology , Dexamethasone/pharmacology , Pregnancy, Animal , Prenatal Exposure Delayed Effects , Analysis of Variance , Animals , Blood Pressure Determination , Callithrix , Cystatin C/drug effects , Cystatin C/metabolism , Female , Haplorhini , Kidney Glomerulus/drug effects , Kidney Glomerulus/physiology , Male , Nephrons/drug effects , Organ Size/drug effects , Pregnancy , Probability , Proteinuria , Reference Values
SELECTION OF CITATIONS
SEARCH DETAIL
...