Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4452, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789482

ABSTRACT

Mutualistic symbioses have contributed to major transitions in the evolution of life. Here, we investigate the evolutionary history and the molecular innovations at the origin of lichens, which are a symbiosis established between fungi and green algae or cyanobacteria. We de novo sequence the genomes or transcriptomes of 12 lichen algal symbiont (LAS) and closely related non-symbiotic algae (NSA) to improve the genomic coverage of Chlorophyte algae. We then perform ancestral state reconstruction and comparative phylogenomics. We identify at least three independent gains of the ability to engage in the lichen symbiosis, one in Trebouxiophyceae and two in Ulvophyceae, confirming the convergent evolution of the lichen symbioses. A carbohydrate-active enzyme from the glycoside hydrolase 8 (GH8) family was identified as a top candidate for the molecular-mechanism underlying lichen symbiosis in Trebouxiophyceae. This GH8 was acquired in lichenizing Trebouxiophyceae by horizontal gene transfer, concomitantly with the ability to associate with lichens fungal symbionts (LFS) and is able to degrade polysaccharides found in the cell wall of LFS. These findings indicate that a combination of gene family expansion and horizontal gene transfer provided the basis for lichenization to evolve in chlorophyte algae.


Subject(s)
Chlorophyta , Lichens , Phylogeny , Symbiosis , Lichens/genetics , Lichens/microbiology , Symbiosis/genetics , Chlorophyta/genetics , Gene Transfer, Horizontal , Evolution, Molecular , Biological Evolution , Transcriptome , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Genomics
2.
Plant Physiol ; 190(1): 72-84, 2022 08 29.
Article in English | MEDLINE | ID: mdl-35642902

ABSTRACT

Plants display a tremendous diversity of developmental and physiological features, resulting from gains and losses of functional innovations across the plant phylogeny. Among those, the most impactful have been undoubtedly the ones that allowed plant terrestrializations, the transitions from an aquatic to a terrestrial environment. Although the embryophyte terrestrialization has been particularly scrutinized, others occurred across the plant phylogeny with the involvement of mutualistic symbioses as a common theme. Here, we review the current pieces of evidence supporting that the repeated colonization of land by plants has been facilitated by interactions with mutualistic symbionts. In that context, we detail two of these mutualistic symbioses: the arbuscular mycorrhizal symbiosis in embryophytes and the lichen symbiosis in chlorophyte algae. We suggest that associations with bacteria should be revisited in that context, and we propose that overlooked symbioses might have facilitated the emergence of other land plant clades.


Subject(s)
Embryophyta , Mycorrhizae , Mycorrhizae/genetics , Phylogeny , Plants/microbiology , Symbiosis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...