Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 19 de 19
1.
Food Funct ; 15(10): 5287-5299, 2024 May 20.
Article En | MEDLINE | ID: mdl-38639730

Catechol-O-methyltransferase (COMT) plays a central role in the metabolic inactivation of endogenous neurotransmitters and xenobiotic drugs and hormones having catecholic structures. Its inhibitors are used in clinical practice to treat Parkinson's disease. In this study, a fluorescence-based visualization inhibitor screening method was developed to assess the inhibition activity on COMT both in vitro and in living cells. Following the screening of 94 natural products, Pu-erh tea extract exhibited the most potent inhibitory effect on COMT with an IC50 value of 0.34 µg mL-1. In vivo experiments revealed that Pu-erh tea extract substantially hindered COMT-mediated levodopa metabolism in rats, resulting in a significant increase in levodopa levels and a notable decrease in 3-O-methyldopa in plasma. Subsequently, the chemical components of Pu-erh tea were analyzed using UHPLC-Q-Exactive Orbitrap HRMS, identifying 24 major components. Among them, epigallocatechin gallate, gallocatechin gallate, epicatechin gallate, and catechin gallate exhibited potent inhibition of COMT activity with IC50 values from 93.7 nM to 125.8 nM and were the main bioactive constituents in Pu-erh tea responsible for its COMT inhibition effect. Inhibition kinetics analyses and docking simulations revealed that these compounds competitively inhibit COMT-mediated O-methylation at the catechol site. Overall, this study not only explained how Pu-erh tea catechins inhibit COMT, suggesting Pu-erh tea as a potential dietary intervention for Parkinson's disease, but also introduced a new strategy for discovering COMT inhibitors more effectively.


Catechin , Catechol O-Methyltransferase Inhibitors , Catechol O-Methyltransferase , Levodopa , Plant Extracts , Rats, Sprague-Dawley , Tea , Animals , Rats , Catechol O-Methyltransferase Inhibitors/pharmacology , Catechol O-Methyltransferase/metabolism , Catechin/analogs & derivatives , Catechin/pharmacology , Catechin/chemistry , Levodopa/metabolism , Tea/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Male , Humans , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Camellia sinensis/chemistry , Molecular Docking Simulation
2.
Carbohydr Polym ; 327: 121659, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38171656

Ophiopogonis Radix is a well-known Traditional Chinese Medicine and functional food that is rich in polysaccharides and has fructan as a characteristic component. In this study, an inulin neoseries-type fructan designated as OJP-W2 was obtained and characterized from Ophiopogonis Radix, and its potential therapeutic effect on liver fibrosis in vivo were investigated. Structural studies revealed that OJP-W2 had a molecular weight of 5.76 kDa and was composed of glucose and fructose with a molar ratio of 1.00:30.87. Further analysis revealed OJP-W2 has a predominantly lineal (1-2)-linked ß-D-fructosyl units linked to the glucose moiety of the sucrose molecule with (2-6)-linked ß-D-fructosyl side chains. Pharmacological studies revealed that OJP-W2 exerted a marked hepatoprotective effect against liver fibrosis, the mechanism of action was involved in regulating collagen deposition (α-SMA, COL1A1 and liver Hyp contents) and TGF-ß/Smads signaling pathway, alleviating liver inflammation (IL-1ß, IL-6, CCL5 and F4/80) and MAPK signaling pathway, and inhibiting hepatic apoptosis (Bax, Bcl-2, ATF4 and Caspase 3). These data provide evidence for expanding Ophiopogonis Radix-acquired fructan types and advancing our understanding of the specific role of inulin neoseries-type fructan in liver fibrosis therapy.


Fructans , Inulin , Humans , Fructans/pharmacology , Fructans/therapeutic use , Fructans/chemistry , Inulin/pharmacology , Inulin/therapeutic use , Liver Cirrhosis/drug therapy , Polysaccharides , Glucose
3.
J Ethnopharmacol ; 321: 117514, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38042388

ETHNOPHARMACOLOGICAL RELEVANCE: Chronic liver diseases mainly include chronic viral liver disease, metabolic liver disease, cholestatic liver disease (CLD), autoimmune liver disease, and liver fibrosis or cirrhosis. Notably, the compound formulas of traditional Chinese medicine (TCM) is effective for chronic liver diseases in clinical trials and basic research in vivo, which provide evidence of chronic liver disease treatment with integrated TCM and traditional Western medicine. AIM OF THE REVIEW: This paper aims to provide a comprehensive review of the compound formulas of TCM for treating different chronic liver diseases to elucidate the composition, main curative effects, and mechanisms of these formulas and research methods. MATERIALS AND METHODS: Different keywords related to chronic liver diseases and keywords related to the compound formulas of TCM were used to search the literature. PubMed, Scopus, Web of Science, and CNKI were searched to screen out original articles about the compound formulas of TCM related to the treatment of chronic liver diseases, mainly including clinical trials and basic in vivo research related to Chinese patent drugs, classic prescriptions, proven prescriptions, and hospital preparations. We excluded review articles, meta-analysis articles, in vitro experiments, articles about TCM monomers, articles about single-medicine extracts, and articles with incomplete or uncertain description of prescription composition. Plant names were checked with MPNS (http://mpns.kew.org). RESULTS: In this review, the clinical efficacy and mechanism of compound formulas of TCM were summarized for the treatment of chronic viral hepatitis, nonalcoholic fatty liver disease, CLD, and liver fibrosis or cirrhosis developed from these diseases and other chronic liver diseases. For each clinical trial and basic research in vivo, this review provides a detailed record of the specific composition of the compound formulas of TCM, type of clinical research, modeling method of animal experiments, grouping methods, medication administration, main efficacy, and mechanisms. CONCLUSION: The general development process of chronic liver disease can be summarized as chronic hepatitis, liver fibrosis or cirrhosis, and hepatocellular carcinoma. The compound formulas of TCM have some applications in these stages of chronic liver diseases. Owing to the continuous progress of medical technology, the benefits of the compound formulas of TCM in the treatment of chronic liver diseases are constantly changing and developing.


Drugs, Chinese Herbal , Liver Diseases , Animals , Clinical Trials as Topic , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Liver Cirrhosis/drug therapy , Liver Diseases/drug therapy , Medicine, Chinese Traditional/methods , Treatment Outcome , Humans
4.
Heliyon ; 9(7): e17908, 2023 Jul.
Article En | MEDLINE | ID: mdl-37483732

Renal fibrosis (RF) is a common pathological feature of chronic kidney disease (CKD), which remains a major public health problem. As now, there is still lack of chemical or biological drugs to reverse RF. Shen-shuai-yi Recipe (SSYR) is a classical Chinese herbal formula for the treatment of CKD. However, the effects and mechanisms of SSYR in treating RF are still not clear. In this study, the active constituents SSYR for treating RF were explored by UHPLC-Q-Orbitrap HRMS. Bioinformatics analyses were employed to analyze the key pharmacological targets and the core active constituents of SSYR in the treatment of RF. In experimental validation, vehicle or SSYR at doses of 2.12 g/kg/d and 4.25 g/kg/d were given by orally to unilateral ureteric obstruction (UUO) mice. 13 days after treatment, we detected the severity of renal fibrosis, extracellular collagen deposition and pre-fibrotic signaling pathways. Bioinformatics analysis suggested that signal transducer and activator of transcription 3 (STAT3) was the core target and lenticin, luteolin-7-O-rutinoside, hesperidin, kaempferol-3-O-rutinoside, and 3,5,6,7,8,3',4'-heptamethoxyflavone were the key constituents in SSYR for treating RF. SSYR significantly reduced the expressions of fibronectin (FN), α-smooth muscle actin (α-SMA), collagen-I and alleviated renal interstitial collagen deposition in UUO kidneys. In mechanism, SSYR potently blocked the phosphorylation of STAT3 and Smad3 and suppressed the expression of connective tissue growth factor (CTGF). Collectively, SSYR can ameliorate RF via inhibiting the phosphorylation of STAT3 and its downstream and reducing the collagen deposition, suggesting that SSYR can be developed as a novel medicine for treating RF.

5.
Phytomedicine ; 113: 154732, 2023 May.
Article En | MEDLINE | ID: mdl-36933457

BACKGROUND: New therapeutic approaches are required to improve the outcomes of lung cancer (LC), a leading cause of cancer-related deaths worldwide. Chinese herbal medicine formulae widely used in China provide a unique opportunity for improving LC treatment, and the Shuang-Huang-Sheng-Bai (SHSB) formula is a typical example. However, the underlying mechanisms of action remains unclear. PURPOSE: This study aimed to confirm the efficacy of SHSB against lung adenocarcinoma (LUAD), which is a major histological type of LC, unveil the downstream targets of this formula, and assess the clinical relevance and biological roles of the newly identified target. METHODS: An experimental metastasis mouse model and a subcutaneous xenograft mouse model were used to evaluate the anti-cancer activity of SHSB. Multi-omics profiling of subcutaneous tumors and metabolomic profiling of sera were performed to identify downstream targets, especially the metabolic targets of SHSB. A clinical trial was conducted to verify the newly identified metabolic targets in patients. Next, the metabolites and enzymes engaged in the metabolic pathway targeted by SHSB were measured in clinical samples. Finally, routine molecular experiments were performed to decipher the biological functions of the metabolic pathways targeted by SHSB. RESULTS: Oral SHSB administration showed overt anti-LUAD efficacy as revealed by the extended overall survival of the metastasis model and impaired growth of implanted tumors in the subcutaneous xenograft model. Mechanistically, SHSB administration altered protein expression in the post-transcriptional layer and modified the metabolome of LUAD xenografts. Integrative analysis demonstrated that SHSB markedly inhibited acetyl-CoA synthesis in tumors by post-transcriptionally downregulating ATP-citrate lyase (ACLY). Consistently, our clinical trial showed that oral SHSB administration declined serum acetyl-CoA levels of patients with LC. Moreover, acetyl-CoA synthesis and ACLY expression were both augmented in clinical LUAD tissues of patients, and high intratumoral ACLY expression predicted a detrimental prognosis. Finally, we showed that ACLY-mediated acetyl-CoA synthesis is essential for LUAD cell growth by promoting G1/S transition and DNA replication. CONCLUSION: Limited downstream targets of SHSB for LC treatment have been reported in previous hypothesis-driven studies. In this study, we conducted a comprehensive multi-omics investigation and demonstrated that SHSB exerted its anti-LUAD efficacy by actively and post-transcriptionally modulating protein expression and particularly restraining ACLY-mediated acetyl-CoA synthesis.


Adenocarcinoma of Lung , Drugs, Chinese Herbal , Lung Neoplasms , Humans , Mice , Animals , ATP Citrate (pro-S)-Lyase/genetics , ATP Citrate (pro-S)-Lyase/metabolism , Acetyl Coenzyme A/metabolism , Drugs, Chinese Herbal/pharmacology , Adenocarcinoma of Lung/drug therapy , Lung Neoplasms/drug therapy
6.
Int J Biol Macromol ; 230: 123252, 2023 Mar 01.
Article En | MEDLINE | ID: mdl-36639082

Nonalcoholic steatohepatitis (NASH) is a chronic liver disease characterized by inflammation and hepatic steatosis that may coincide with fibrotic activity. To date, no pharmacological agents have been approved for NASH treatment. Here, a homogeneous (1,3),(1,6)-ß-D-glucan (PUP-W-1, Mw: 41.07 kDa) was successfully purified from Polyporus umbellatus (Pers.) Fries sclerotia and characterized. The analysis showed that the PUP-W-1 backbone consisted of a repeating chain of eight →3)-ß-D-Glcp-(1 â†’ units, with branched chains of four ß-D-Glcp residues, joined by repeating 1,6-linkage units at the O-6 position of the backbone. The pharmacological effects of PUP-W-1 treatment in the context of NASH pathogenesis were explored using a methionine choline-deficient (MCD) diet-induced murine steatohepatitis model. The MCD model mice exhibited pronounced steatohepatitis, inflammatory activity, steatosis, stellate cell activation, and mild fibrotic activity. Treatment of the mice for three weeks with PUP-W-1 prevented the development of NASH due to the suppression of inflammation, lipid accumulation, and fibrosis. As suggested by these findings, PUP-W-1 may hold promise as a natural drug candidate or precursor for the treatment of NASH.


Non-alcoholic Fatty Liver Disease , Polyporus , Mice , Animals , Non-alcoholic Fatty Liver Disease/pathology , Glucans/pharmacology , Polyporus/chemistry , Diet , Choline/analysis , Methionine/analysis , Inflammation/pathology , Mice, Inbred C57BL , Liver
7.
J Sep Sci ; 46(2): e2200602, 2023 Jan.
Article En | MEDLINE | ID: mdl-36377517

Cordycepin from Cordyceps possesses excellent pharmacological properties, including anti-inflammation and anti-tumor effects, therefore representing a potential alternative medicine. However, doubts about the pharmacokinetic results of cordycepin had been raised in the previous study due to its rapid deamination. The organic solvent methanol was immediately added to terminate the degradation of cordycepin in anticoagulated blood samples and enable the accurate evaluation of pharmacokinetics in vivo. A sensitive and selective ultra-high-performance liquid chromatography coupled with Q Exactive hybrid quadrupole orbitrap high-resolution accurate mass spectrometry method was developed and validated to simultaneously determine cordycepin and its deamination metabolite 3'-deoxyinosine using 2-chloroadenosine as an internal standard in rat whole blood. The calibration curves of cordycepin and 3'-deoxyinosine showed excellent linearity within the concentration range of 1.05-10 000.00 ng/ml with acceptable accuracy, precision, selectivity, recovery, matrix effect, and stability. This method was successfully applied to the pharmacokinetic study of cordycepin and its metabolite in rat blood. The effect of the adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nonyl) adenine hydrochloride on the pharmacokinetics of cordycepin was investigated. In summary, the reliable pharmacokinetic parameters of cordycepin and its deamination metabolite 3'-deoxyinosine in rat blood were successfully elucidated. Erythro-9-(2-hydroxy-3-nonyl) adenine hydrochloride considerably prolonged the half-life of cordycepin in vivo.


Chromatography, High Pressure Liquid , Rats , Animals , Chromatography, High Pressure Liquid/methods , Reproducibility of Results , Mass Spectrometry/methods
8.
Front Pharmacol ; 13: 965914, 2022.
Article En | MEDLINE | ID: mdl-36339578

Cholestatic liver disease (CLD) is a chronic liver disease characterized by ductular reaction, inflammation and fibrosis. As there are no effective chemical or biological drugs now, majority of CLD patients eventually require liver transplantation. Astragali radix (AR) is commonly used in the clinical treatment of cholestatic liver disease and its related liver fibrosis in traditional Chinese medicine, however its specific active constituents are not clear. Total astragalus saponins (ASTs) were considered to be the main active components of AR. The aim of this study is to investigate the improvement effects of the total astragalus saponins (ASTs) and its main constituents in cholestatic liver disease. The ASTs from AR was prepared by macroporous resin, the content of saponins was measured at 60.19 ± 1.68%. The ameliorative effects of ASTs (14, 28, 56 mg/kg) were evaluated by 3, 5-Diethoxycarbonyl-1, 4-dihydrocollidine (DDC)-induced CLD mouse model. The contents of hydroxyproline (Hyp), the mRNA and protein expression of cytokeratin 19 (CK19) and α-smooth muscle actin (α-SMA) in liver tissue were dose-dependently improved after treatment for ASTs. 45 astragalus saponins were identified in ASTs by UHPLC-Q-Exactive Orbitrap HRMS, including astragaloside I, astragaloside II, astragaloside III, astragaloside IV, isoastragaloside I, isoastragaloside II, cycloastragenol, etc. And, it was found that ductular reaction in sodium butyrate-induced WB-F344 cell model were obviously inhibited by these main constituents. Finally, the improvement effects of astragaloside I, astragaloside II, astragaloside IV and cycloastragenol (50 mg/kg) were evaluated in DDC-induced CLD mice model. The results showed that astragaloside I and cycloastragenol significantly improved mRNA and protein expression of CK19 and α-SMA in liver tissue. It suggested that astragaloside I and cycloastragenol could alleviate ductular reaction and liver fibrosis. In summary, this study revealed that ASTs could significantly inhibit ductular reaction and liver fibrosis, and astragaloside I and cycloastragenol were the key substances of ASTs for treating cholestatic liver disease.

9.
Front Pharmacol ; 13: 974578, 2022.
Article En | MEDLINE | ID: mdl-36110541

Human cytochrome P450 3A4 (hCYP3A4) is a predominant enzyme to trigger clinically relevant drug/herb-drug interactions (DDIs or HDIs). Although a number of herbal medicines have been found with strong anti-hCYP3A4 effects in vitro, the in vivo modulatory effects of herbal medicines on hCYP3A4 and their potential risks to trigger HDIs are rarely investigated. Herein, we demonstrate a case study to efficiently find the herbal medicine(s) with potent hCYP3A4 inhibition in vitro and to accurately assess the potential HDIs risk in vivo. Following screening over 100 herbal medicines, the Chinese herb Styrax was found with the most potent hCYP3A4 inhibition in HLMs. In vitro assays demonstrated that Styrax could potently inhibit mammalian CYP3A in liver and intestinal microsomes from both humans and rats. In vivo pharmacokinetic assays showed that Styrax (i.g., 100 mg/kg) significantly elevated the plasma exposure of two CYP3A-substrate drugs (midazolam and felodipine) when midazolam or felodipine was administered orally. By contrast, the plasma exposure of either midazolam or felodipine was hardly affected by Styrax (i.g.) when the victim drug was administered intravenously. Further investigations demonstrated that seven pentacyclic triterpenoid acids (PTAs) in Styrax were key substances responsible for CYP3A inhibition, while these PTAs could be exposed to intestinal tract at relatively high exposure levels but their exposure levels in rat plasma and liver were extremely low. These findings well explained why Styrax (i.g.) could elevate the plasma exposure of victim drugs only when these agents were orally administrated. Collectively, our findings demonstrate that Styrax can modulate the pharmacokinetic behavior of CYP3A-substrate drugs via inhibiting intestinal CYP3A, which is very helpful for the clinical pharmacologists to better assess the HDIs triggered by Styrax or Styrax-related herbal products.

10.
Phytomedicine ; 99: 154018, 2022 May.
Article En | MEDLINE | ID: mdl-35247668

BACKGROUND: Amygdalin (Amy) is a cyanoside and is one of the chief active ingredients in Persicae Semen, Armeniacae Semen Amarum, and Pruni Semen. Amy has extensive and remarkable pharmacological activities, including against anti-hepatic fibrosis. However, the pharmacokinetic and anti-liver fibrosis effects of Amy and its enzyme metabolite prunasin (Pru) in vivo have not been studied and compared, and studies on Pru are limited. PURPOSE: To investigate the pharmacokinetic characteristics and anti-liver fibrosis effect of Amy and its metabolite Pru in vivo and in vitro, and elucidate whether the metabolism of Amy in vivo for Pru is activated. METHODS: Pru was prepared from Amy via the enzymatic hydrolysis of ß-glucosidase, and isolated by silica gel column chromatography. An efficient and sensitive ultrahigh-performance liquid chromatography-Q exactive hybrid quadrupole orbitrap high-resolution accurate mass spectrometry was developed and validated to determine simultaneously Amy and Pru in rat plasma after dosing intravenously and orally for pharmacokinetic studies. The affinities of Amy and Pru for ß-glucosidase were compared by enzyme kinetic experiments to explain the possible reasons for the differences in pharmacokinetic behavior. In vitro, the inhibitory effects of Amy and Pru on hepatic stellate cell activation and macrophage inflammation on JS1 and RAW 264.7 cells were determined. In vivo, the ameliorative effects of Amy and Pru on liver fibrosis effects were comprehensively evaluated by CCl4-induced liver fibrosis model in mice. RESULTS: The standard curves of Amy and Pru in rat plasma showed good linearity within the concentration range of 1.31-5000.00 ng/ml, with acceptable selectivity, carry-over, detection limit and quantification limits, intra- and inter-day precision, accuracy, matrix effect, and stability. The Cmax and AUC(0-∞) of Pru (Cmax = 1835.12 ± 268.09 ng/ml, AUC(0-∞) = 103,913.17 ± 14,202.48 ng•min/ml) were nearly 79.51- and 66.22-fold higher than those of Amy (Cmax = 23.08 ± 5.08 ng/ml, AUC(0-∞) = 1569.22 ± 650.62 ng•min/ml) after the oral administration of Amy. The oral bioavailability of Pru (64.91%) was higher than that of Amy (0.19%). The results of enzyme hydrolysis kinetics assay showed that the Vmax and Km of Pru were lower than those of Amy in commercial ß-glucosidase and intestinal bacteria. In vitro cellular assays showed that Amy and Pru were comparable in inhibiting the NO production in the RAW264.7 cell supernatant and the mRNA expression of α-SMA and Col1A1 in JS1 cells. Amy and Pru were also showed comparable activity in ameliorating CCl4-induced liver fibrosis in mice. CONCLUSION: The pharmacokinetic characteristics of Amy and Pru in rat plasma were significantly different. After the separate gavage of Amy and Pru, Amy was absorbed predominantly as it's metabolite Pru, whereas Pru was absorbed predominantly as a prototype. The anti-liver fibrosis effects of Amy and its deglycosylated metabolite Pru were comparable in vivo and in vitro. The deglycosylated activated metabolite Pru of Amy plays an important role in anti-liver fibrosis. These findings will facilitate the further exploitation of Amy and Pru.

11.
J Proteome Res ; 20(6): 3305-3314, 2021 06 04.
Article En | MEDLINE | ID: mdl-33999640

An untargeted multi-omics study implicated the potential dysregulation of fatty acid, nucleotide, and energy metabolism in the brainstems of spontaneously hypertensive rats (SHRs). A further quantitative exploration of the alterations in the metabolic pathways is necessary for a deep understanding of the central nervous system in SHRs. Targeted metabolic profiling of 40 fatty acids (PeptideAtlas: PASS01671) and 32 metabolites of nucleotides and energy metabolism (PeptideAtlas: PASS01672) and parallel reaction monitoring analysis of 5 proteins (PeptideAtlas: PASS01673) were performed on the brainstems of SHRs (n = 8, 11 weeks old) and normotensive Wistar rats (n = 8, age-matched) using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-tandem MS. The targeted profiling results of metabolites and proteins revealed decreased polyunsaturated fatty acid (PUFA) synthesis with a significant downregulation of cis-11,14-eicosadienoic acid, cis-13,16-docosadienoic acid, and docosatetraenoate and impaired PUFA oxidation with the accumulation of γ-linolenate induced by the significantly downregulated expression of 2,4-dienoyl-CoA reductase (p < 0.05). Dysregulated GTP and ATP metabolism was observed, with significantly decreased GDP and ADP (p < 0.05) correlated with reduced GTPases of guanine nucleotide-binding protein subunit beta-1 (GNB1), transforming protein RhoA (RHOA), and Rho-related GTP-binding protein RhoB (RHOB) in the brainstem of SHRs. In addition, protein-arginine deiminase type-2 was significantly reduced in the brainstems of SHRs (p < 0.05). The aberrant PUFA and energy metabolism might help to explain the alterations in the brainstem of SHRs. The findings on both metabolites and proteins could provide systemic insights into the pathology basis of altered PUFA and energy metabolism in hypertension, especially in the central nervous system.


Hypertension , Animals , Brain Stem , Fatty Acids, Unsaturated , Guanosine Triphosphate , Rats , Rats, Inbred SHR , Rats, Wistar
12.
Biomed Chromatogr ; 34(3): e4779, 2020 Mar.
Article En | MEDLINE | ID: mdl-31845520

Cordycepin has recently received increased attention owing to its extensive pharmacological activity. Adenosine deaminase (ADA) is widely distributed in mammalian blood and tissues; as a result, cordycepin is quickly metabolized upon entering into the body and converted into the inactive metabolite 3'-deoxyinosine, thus limiting its activity when administered alone. We herein present a novel ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for screening ADA inhibitors against the metabolism of cordycepin. Cordycepin and 3'-deoxyinosine were chosen as substrate and product, respectively. A proper separation was achieved for all analytes within 3 min. 3'-Deoxyinosine was quantified in the presence or absence of potential ADA inhibitors to evaluate ADA activity. The assay can simultaneously determine substrate and product, with the endogenous substance and ADA inhibitors added not interfering in its activity. After optimizing the enzymatic incubation and UHPLC-MS/MS conditions, Km and Vmax values for ADA deamination of cordycepin were 95.18 ± 7.85 µm and 363.90 ± 12.16 µmol/min/unit, respectively. Oleanolic acid and ursolic acid from Ligustri Lucidi Fructus were chosen as ADA inhibitors with half maximal inhibitory concentration values of 21.82 ± 0.39 and 18.41 ± 0.14 µm, respectively. A non-competitive inhibition model was constructed and this assay can be used to screen other potential ADA inhibitors quickly and accurately.


Adenosine Deaminase Inhibitors , Chromatography, High Pressure Liquid/methods , Deoxyadenosines , Ligustrum/chemistry , Plant Extracts , Adenosine Deaminase Inhibitors/analysis , Adenosine Deaminase Inhibitors/chemistry , Adenosine Deaminase Inhibitors/isolation & purification , Deoxyadenosines/analysis , Deoxyadenosines/metabolism , Drug Discovery , Plant Extracts/analysis , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Tandem Mass Spectrometry/methods , Triterpenes , Ursolic Acid
13.
Eur J Pharm Sci ; 123: 459-474, 2018 Oct 15.
Article En | MEDLINE | ID: mdl-30077712

Vasicine (VAS) is a potential natural cholinesterase inhibitor for treatment of Alzheimer's disease. Due to one chiral centre (C-3) presenting in molecule, VAS has two enantiomers, d-vasicine (d-VAS) and l-vasicine (l-VAS). The study was undertaken to investigate the stereoselective glucuronidation metabolism, pharmacokinetics, anti-amnesic effect and acute toxicity of VAS enantiomers. In results, the glucuronidation metabolic rate of l-VAS was faster than d-VAS in human liver microsomes and isoenzymes tests, and it was proved that the UDP-glucuronosyltransferase (UGT) 1A9 and UGT2B15 were the major metabolic enzymes for glucuronidation of l-VAS, while only UGT1A9 for d-VAS, which take responsibility of the significantly less metabolic affinity of d-VAS than l-VAS in HLM and rhUGT1A9. The plasma exposure of d-VAS in rats was 1.3-fold and 1.6-fold higher than that of l-VAS after intravenous and oral administration of d-VAS and l-VAS, respectively. And the plasma exposure of the major glucuronidation metabolite d-VASG was one of tenth of l-VASG or more less, no matter by intravenous or oral administration. Both d-VAS and l-VAS were exhibited promising acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities, and the BChE inhibitory activity of d-VAS with IC50 of 0.03 ±â€¯0.001 µM was significantly stronger than that of l-VAS with IC50 of 0.98 ±â€¯0.19 µM. The molecular docking results indicated that d-VAS and l-VAS could bind to the catalytic active site (CAS position) either of human AChE and BChE, and the BChE combing ability of d-VAS (the score of GBI/WAS dG -7.398) was stronger than that of l-VAS (the score of GBI/WAS dG -7.135). Both d-VAS and l-VAS could improving the learning and memory on scopolamine-induced memory deficits in mice. The content of acetylcholine (ACh) after oral administration d-VAS increased more than that of l-VAS in mice cortex, through inhibiting cholinesterase (ChE) and increasing choline acetyltransferase (ChAT). In addition, the LD50 value of d-VAS (282.51 mg·kg-1) was slight lower than l-VAS (319.75 mg·kg-1). These results indicated that VAS enantiomers displayed significantly stereoselective metabolic, pharmacokinetics, anti-amnesic effect and toxic properties in vitro and in vivo. The d-VAS might be the dominant configuration for treating Alzheimer's disease.


Alkaloids/pharmacokinetics , Amnesia/drug therapy , Behavior, Animal/drug effects , Cholinesterase Inhibitors/pharmacokinetics , Glucuronides/metabolism , Memory/drug effects , Quinazolines/pharmacokinetics , Acetylcholinesterase/metabolism , Administration, Intravenous , Administration, Oral , Alkaloids/administration & dosage , Alkaloids/chemistry , Alkaloids/toxicity , Amnesia/chemically induced , Amnesia/psychology , Animals , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/administration & dosage , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/toxicity , Disease Models, Animal , Female , GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/metabolism , Glucuronosyltransferase/metabolism , Guinea Pigs , Humans , Isomerism , Male , Metabolic Clearance Rate , Metabolic Detoxication, Phase II , Mice, Inbred C57BL , Microsomes, Liver/enzymology , Molecular Docking Simulation , Quinazolines/administration & dosage , Quinazolines/chemistry , Quinazolines/toxicity , Rabbits , Rats, Sprague-Dawley , Scopolamine , Structure-Activity Relationship , UDP-Glucuronosyltransferase 1A9
14.
Front Pharmacol ; 9: 346, 2018.
Article En | MEDLINE | ID: mdl-29755345

The analogous ß-carboline alkaloids, harmaline (HAL) and harmine (HAR), possess a variety of biological properties, including acetylcholinesterase (AChE) inhibitory activity, antioxidant, anti-inflammatory, and many others, and have great potential for treating Alzheimer's disease (AD). However, studies have showed that the two compounds have similar structures and in vitro AChE inhibitory activities but with significant difference in bioavailability. The objective of this study was to comparatively investigate the effects of HAL and HAR in memory deficits of scopolamine-induced mice. In the present study, mice were pretreated with HAL (2, 5, and 10 mg/kg), HAR (10, 20, and 30 mg/kg) and donepezil (5 mg/kg) by intragastrically for 7 days, and were daily intraperitoneal injected with scopolamine (1 mg/kg) to induce memory deficits and then subjected to behavioral evaluation by Morris water maze. To further elucidate the underlying mechanisms of HAL and HAR in improving learning and memory, the levels of various biochemical factors and protein expressions related to cholinergic function, oxidative stress, and inflammation were examined. The results showed that HAL and HAR could effectively ameliorate memory deficits in scopolamine-induced mice. Both of them exhibited an enhancement in cholinergic function by inhibiting AChE and inducing choline acetyltransferase (ChAT) activities, and antioxidant defense via increasing the antioxidant enzymes activities of superoxide dismutase and glutathione peroxidase, and reducing maleic diadehyde production, and anti-inflammatory effects through suppressing myeloperoxidase, tumor necrosis factor α, and nitric oxide as well as modulation of critical neurotransmitters such as acetylcholine (ACh), choline (Ch), L-tryptophan (L-Trp), 5-hydroxytryptamine (5-HT), γ-aminobutyric acid (γ-GABA), and L-glutamic acid (L-Glu). Furthermore, the regulations of HAL on cholinergic function, inflammation, and neurotransmitters were more striking than those of HAR, and HAL manifested a comparable antioxidant capacity to HAR. Remarkably, the effective dosage of HAL (2 mg/kg) was far lower than that of HAR (20 mg/kg), which probably due to the evidently differences in the bioavailability and metabolic stability of the two analogs. Taken together, all these results revealed that HAL may be a promising candidate compound with better anti-amnesic effects and pharmacokinetic characteristics for the treatments of AD and related diseases.

15.
J Pharm Biomed Anal ; 153: 175-181, 2018 May 10.
Article En | MEDLINE | ID: mdl-29499460

Adenosine deaminase (ADA), which is a key enzyme in the metabolism of purine nucleosides, plays important roles in diverse disorders, such as tuberculosis, diabetes, liver disorders, and cancer. Determination of the activities of ADA and its isoenzymes in body fluids has received considerable attention in the diagnosis and treatment of relative diseases. Ultraviolet spectroscopy with adenosine (AD) as a substrate is a classical approach for screening potential ADA inhibitors by measuring the decrease in substrate (AD) at 265 nm or increase in the product (inosine) at 248 nm. However, AD and inosine share a very close maximum absorption wavelength, and the reaction is uncertain and is frequently interfered by the background color of matrix compounds or plant extracts. Thus, the method usually yields false positive or negative results. In this study, a novel, rapid, sensitive, and accurate ultra-high-performance liquid chromatography-Q exactive hybrid quadrupole orbitrap high-resolution accurate mass spectrometric (UHPLC-Q-Orbitrap HRMS) method was developed for determining and screening ADA inhibitors by directly determining the deamination product of AD, inosine. A proper separation was achieved for inosine and chlormequat (internal standard) within 2 min via isocratic elution (0.1% formic acid:methanol = 85:15, v/v) at a flow rate of 0.3 mL min-1 on a Waters ACQUITY HSS T3 column (2.1 mm × 100 mm, 1.8 µm) following a simple precipitation of proteins. The intra- and inter-day precisions of the developed method were below 7.17% and 8.99%, respectively. The method exhibited advantages of small total reaction volume (60 µL), short running time (2 min), high sensitivity (lowest limit of quantification of 0.02 µM for inosine), and low cost (small enzyme consumption of 0.007 unit mL-1 for ADA and substrate of 3.74 µM for AD in individual inhibition), and no matrix effects (101.64%-107.12%). Stability results showed that all analytes were stable under the investigated conditions. The developed method was successfully applied to the detection of the inhibitory activity of ADA from traditional Chinese medicines.


Adenosine Deaminase Inhibitors/chemistry , Adenosine Deaminase/chemistry , Plant Extracts/chemistry , Body Fluids/chemistry , Chlormequat/chemistry , Chromatography, High Pressure Liquid/methods , Inosine/chemistry , Limit of Detection , Medicine, Chinese Traditional/methods , Reproducibility of Results , Sensitivity and Specificity , Tandem Mass Spectrometry/methods
16.
Front Pharmacol ; 8: 541, 2017.
Article En | MEDLINE | ID: mdl-28871225

Harmaline and harmine occur naturally in plants and are distributed endogenously in human and animal tissues. The two ß-carboline alkaloids possess potential for treating Alzheimer's disease, Parkinson's disease, depression and other central nervous system diseases. However, studies have showed that the two compounds have similar structures but with quite different bioavailability. The aim of this study was to elucidate the exposure difference and characterize the in vitro transport, metabolism, and pharmacokinetic properties of harmaline and harmine. The results showed that the harmaline and harmine transport across the Caco-2 and MDCK cell monolayers was varied as the time, concentration, pH and temperature changed. The absorption of harmaline and harmine was significantly decreased when ES (OATPs inhibitor), TEA (OCTs/OCTNs substrate), NaN3 (adenosine triphosphate inhibitor), or sodium vanadate (ATPase Na+/K+-dependent inhibitor) was added. However, when given MK571 and probenecid (the typical MRP2 inhibitor), the PappAB of harmine was increased (1.62- and 1.27-folds), and the efflux ratio was decreased from 1.59 to 0.98 and from 1.59 to 1.19, respectively. In addition, the uptake ratio of harmine at 1 µM was >2.65 in the membrane vesicles expressing human MRP2. Furthermore, harmine could slightly up-regulate the expression of MRP2, which implying harmine might be the substrate of MRP2. Particularly, the CLint -value for harmine was ~1.49-folds greater than that of harmaline in human liver microsomes. It was worth noting that the F-value of harmine was increased 1.96-folds after harmine co-administration with probenecid. To summarize, comprehensive analysis indicated that harmaline and harmine were absorbed by transcellular passive diffusion and a pH- and Na+-dependent mechanism might be mediated by OATPs and OCTs/OCTNs. MRP2 but MDR1 or BCRP might be involved in the transport of harmine. Furthermore, harmine was more unstable and easily metabolized than harmaline. All these findings suggested that harmine not only appears be an MRP2 substrate, but also possesses weak metabolic stability, and eventually leads to a low oral bioavailability. Taken together, the elucidated absorption, transport, metabolism as well as pharmacokinetic characteristics of harmaline and harmine provide useful information for designing delivery systems, pharmacological applications and avoiding drug-drug interactions.

17.
J Ethnopharmacol ; 204: 95-106, 2017 May 23.
Article En | MEDLINE | ID: mdl-28442406

ETHNOPHARMACOLOGICAL RELEVANCE: Aerial parts of Peganum harmala Linn (APP) is used as traditional medical herb for treatment of forgetfulness in Uighur medicine in China. But, the active ingredients and underlying mechanisms are unclear. AIM OF THE STUDY: The present study was undertaken to investigate the improvement effects of extract and alkaloid fraction from APP on scopolamine-induced cognitive dysfunction and to elucidate their underlying mechanisms of action, and to support its folk use with scientific evidence, and lay a foundation for its further researches. MATERIALS AND METHODS: The acetylcholinesterase (AChE) inhibitory activities of extract (EXT), alkaloid fraction (ALK) and flavonoid fraction (FLA) from APP were evaluated in normal male C57BL/6 mice. The anti-amnesic effects of EXT and ALK from APP were measured in scopolamine-induced memory deficits mice by the Morris water maze (MWM) tasks. The levels of biomarkers, enzyme activity and protein expression of cholinergic system were determined in brain tissues. RESULTS: The AChE activity was significantly decreased and the content of neurotransmitter acetylcholine (ACh) was significantly increased in normal mice cortex and hippocampus by treatment with donepezil at dosage of 8mg/kg, EXT at dosages of 183, 550, 1650mg/kg and ALK at dosages of 10, 30, 90mg/kg (P<0.05), and the AChE activity and the content of ACh were not significantly changed in cortex and hippocampus after treatment with FLA at dosages of 10, 30, 90mg/kg (P>0.05). In the MWM task, scopolamine-induced a decrease in both the swimming time within the target zone and the number of crossings where the platform had been placed were significantly reversed by treatment with EXT at dosages of 550, 1650mg/kg and ALK at dosages of 30, 90mg/kg (P<0.05). Moreover, the activity and protein expression of AChE was significantly decreased and the content of neurotransmitter ACh was significantly increased in cerebral cortex of scopolamine-induced mice by treatment with EXT at dosages of 183, 550, 1650mg/kg and ALK at dosages of 10, 30, 90mg/kg (P<0.05), compared with scopolamine-treated group. CONCLUSIONS: EXT and ALK from APP exert beneficial effect on learning and memory processes in mice with scopolamine-induced memory impairment. APP is an effective traditional folk medicine and the ALK fraction is proved to be the main effective components for the treatment of forgetfulness. The ALK may be valuable source for lead compounds discovery and drug development for treatment of memory impairment such as in Alzheimer's disease.


Alkaloids/therapeutic use , Memory Disorders/drug therapy , Neuroprotective Agents/therapeutic use , Peganum , Plant Extracts/therapeutic use , Acetylcholine/metabolism , Acetylcholinesterase/metabolism , Alkaloids/pharmacology , Animals , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Choline O-Acetyltransferase/metabolism , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/therapeutic use , Hippocampus/drug effects , Hippocampus/metabolism , Male , Maze Learning/drug effects , Memory Disorders/chemically induced , Memory Disorders/metabolism , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Phytotherapy , Plant Components, Aerial , Plant Extracts/pharmacology , Scopolamine
18.
Se Pu ; 35(12): 1251-1256, 2017 Dec 08.
Article Zh | MEDLINE | ID: mdl-29372775

A method for the determination of hydroxyproline (Hyp) in liver tissue of mice by hydrophilic interaction chromatography-quadrupole/electrostatic field orbitrap high resolution mass spectrometry (HILIC-HRMS) was developed. The liver tissue samples of normal mice and liver fibrosis mice induced by carbon tetrachloride were hydrolyzed by concentrated hydrochloric acid. After filtrated and diluted by solution, the diluent was separated on an Hypersil GOLD HILIC column (100 mm×2.1 mm, 3 µm). Water-acetonitrile (28:72, v/v)were used as the mobile phases with isocratic elution. Finally, the target analytes were detected in positive model by HRMS equipped with an electrospray ionization source. The linear range of hydroxyproline was from 0.78 to 100.00 µg/L with the correlation coefficient (R2) of 0.9983. The limit of quantification was 0.78 µg/L. By detecting the spiked samples, the recoveries were in the range of 97.4%-100.9% with the relative standard deviations (RSDs) between 1.4% and 2.0%. In addition, comparison of the measurement results by this method and the chloramine T method was proceeded. It was found that the linear correlation between the two methods was very good, and the Pearson correlation coefficient was 0.927. And this method had simpler operation procedure and higher accuracy than chloramine T method. This method can be used for the quick determination of hydroxyproline in liver tissue samples.


Hydroxyproline/analysis , Liver/chemistry , Animals , Chromatography, High Pressure Liquid , Hydrophobic and Hydrophilic Interactions , Mass Spectrometry , Mice , Spectrum Analysis , Static Electricity
19.
J Ethnopharmacol ; 162: 79-86, 2015 Mar 13.
Article En | MEDLINE | ID: mdl-25557031

ETHNOPHARMACOLOGICAL RELEVANCE: Aerial parts of Peganum harmala Linn (APP) is used as traditional medical herb in Uighur medicine in China, and it is traditionally used for treatment of cough and asthma.The aim of the present study is to evaluate the antitussive, expectorant and bronchodilating effects of extract and fractions (alkaloids and flavonoids) from APP, and to support its folk use with scientific evidence, and lay a foundation for its further researches. MATERIALS AND METHODS: APP was extracted with 50% ethanol by reflux, extracts were concentrated in vacuum to afford total extract of APP (EXT). EXT was separated to provide alkaloid fraction (ALK) and flavonoid fraction (FLA) by macroporous resin. Antitussive evaluations were carried out with cough models in mice and guinea pigs induced by ammonia liquor, capsaicin, and citric acid. Phenol red secretion experiments in mice were performed to evaluate the expectorant activity. Bronchodilating activities were evaluated with a bronchoconstrictive challenge induced by acetylcholine chloride and histamine in guinea pigs. RESULTS: In all the three antitussive tests, the EXT and ALK could significantly inhibit the frequency of cough, and prolong the cough latent period in animals. High dose of EXT (1650 mg/kg) and ALK (90 mg/kg) in mice and in guinea pigs created therapeutic activities as good as that of codeine phosphate (30 mg/kg). EXT could significantly increase phenol red secretion in mice for 0.64, 1.08 and 1.29 fold averagely at dosages of 183, 550, and 1650 mg/kg, ALK for 0.63, 0.96, 1.06 fold averagely at dosages of 10, 30, and 90 mg/kg, and ammonium chloride (1500 mg/kg, standard expectorant drug) for 0.97 fold, comparing with control group. Aminophylline could dramatically prolong the preconvulsive time for 162.28% in guinea pigs, EXT for 67.34%, 101.96% and 138.00% at dosages of 183, 550, and 1650 mg/kg, ALK for 55.47%, 97.74% and 126.77% at dosages of 10, 30, and 90 mg/kg, and FLA for 84.69%, 95.94% and 154.52% at dosages of 10, 30, and 90 mg/kg, comparing with pretreatment. CONCLUSIONS: APP is an effective traditional folk medicine for the treatment of cough with potent antitussive, expectorant and bronchodilating activities. The alkaloid fraction is proved to be the most effective components of APP. The alkaloids from APP may be valuable lead compounds for drug development of respiratory diseases.


Antitussive Agents/therapeutic use , Bronchodilator Agents/therapeutic use , Expectorants/therapeutic use , Peganum , Plant Extracts/therapeutic use , Acetylcholine , Ammonia , Animals , Bronchoconstriction/drug effects , Capsaicin , Citric Acid , Cough/chemically induced , Cough/drug therapy , Female , Guinea Pigs , Histamine , Male , Medicine, Chinese Traditional , Mice, Inbred ICR , Phenolsulfonphthalein/pharmacokinetics , Phytotherapy , Plant Components, Aerial , Trachea/metabolism
...