Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Food Chem ; 459: 140403, 2024 Nov 30.
Article in English | MEDLINE | ID: mdl-39024873

ABSTRACT

Ionic strength plays a significant role in the aggregation behavior of myofibrillar proteins. The study investigated the effects of KCl or CaCl2 as substitutes for NaCl on the gel properties and taste of shrimp surimi at a constant ionic strength (IS = 0.51). Increased KCl substitution ratio resulted in a reduction in α-helix content and an increase in ß-sheet content of myofibrillar proteins, thereby enhancing water holding capacity. Optimal KCl substitutions (1.5% NaCl +1.94% KCl) contributed to maintaining the desired taste and improving gel properties. CaCl2 facilitates the extraction and dissolution of myofibrillar proteins, resulting in an organized and dense gel network with significant water-holding capacity. However, excessive additions (>1.27%) resulted in a notable decrease in taste and gel strength due to excessive aggregation and precipitation of myofibrillar proteins. These findings provide a solid theoretical foundation for production of high-quality, low-salt shrimp surimi.


Subject(s)
Calcium Chloride , Penaeidae , Potassium Chloride , Sodium Chloride , Taste , Animals , Sodium Chloride/chemistry , Sodium Chloride/analysis , Penaeidae/chemistry , Calcium Chloride/chemistry , Potassium Chloride/chemistry , Humans , Shellfish/analysis , Osmolar Concentration , Food Handling
2.
Food Chem ; 450: 139359, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38631204

ABSTRACT

The effects of different thermal sterilization conditions on the quality and digestibility of ready-to-eat (RTE) shrimp were investigated. Compared with the high-temperature (121 °C) and short-time (6 min and 8 min) sterilization, the low-temperature (110 and 115 °C) and long-time (>20 min) sterilization significantly promoted the Maillard and browning reactions and changed the color of the RTE-shrimp. The high sterilization temperature promoted shrimp protein oxidation, resulting in increased carbonyl group, disulfide bond, and free radical content, while the free sulfhydryl group content decreased. This oxidation and tissue destruction at high temperature led to reduced texture properties and altered water distribution within the shrimp's muscles. However, sterilized shrimp exhibited superior digestive properties in an in vitro simulated digestion experiment. High-temperature and short-time sterilization is more effective in mitigating the quality deterioration of RTE-shrimp compared to low-temperature and long-time sterilization.


Subject(s)
Hot Temperature , Penaeidae , Shellfish , Sterilization , Animals , Penaeidae/chemistry , Shellfish/analysis , Fast Foods/analysis , Oxidation-Reduction , Food Handling , Digestion
SELECTION OF CITATIONS
SEARCH DETAIL