Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Genet Mol Res ; 15(3)2016 Aug 19.
Article in English | MEDLINE | ID: mdl-27706572

ABSTRACT

In order to understand the effect of grain moisture of inbred lines at the silking and physiological maturity stages on kernel dehydration rate, 59 maize inbred lines from six subgroups were selected. Grain moisture was measured and QTLs associated with kernel dehydration were mapped. A rapid dehydration evaluation and association analysis revealed eight inbred lines with faster dehydration rate, including Yuanwu 02, K36, Zhonger/O2, Lo1125, Han 49, Qi 319, Hua 160, and PH4CV. A single sequence repeat analysis using 85 pairs detected five QTLs with phenotypic variation contribution ≥10% in the permanent F2 generation populations Zheng 58 x S1776 and Chang 7-2 x K1131, which had LOD threshold values ≥ 3 in both 2013 and 2014. The chromosome region of qFkdr7b had not previously been reported and is preliminarily identified as a new major QTL. A false positive field verification of grain dehydration rate of 53 inbred lines indicated that the screening result of the rapid dehydration inbred lines by specific amplification with marker Phi114 was most similar to the field assessment result, followed by markers Phi127 and Phi029. The rapid dehydration lines selected based on primer Phi114 amplification were also similar to the field dehydration rate and can thus be used for molecular marker-assisted selection. A significant effort is needed to improve stress resistance and shorten the growth period via fast kernel dehydration in intermediate materials of the inbred lines K36, Zhonger/ O2, Lo1125, Han 49, Hua 160, and PH4CV, and further using the selected lines for new combinations.


Subject(s)
Quantitative Trait Loci , Zea mays/genetics , Chromosome Mapping , Chromosomes, Plant , Dehydration , Inbreeding , Plant Breeding , Seeds/genetics , Seeds/metabolism , Zea mays/metabolism
2.
Genet Mol Res ; 15(3)2016 Aug 29.
Article in English | MEDLINE | ID: mdl-27706643

ABSTRACT

Molecular markers can increase both the efficiency and speed of breeding programs. Functional markers that detect the functional mutations causing phenotypic changes offer a precise method for genetic identification. In this study, we used newly derived cleaved amplified polymorphic sequence markers to detect the functional mutations of tms5, which is a male sterile gene that is widely used in rice production in China. In addition, restriction cutting sites were designed to specifically digest amplicons of tms5 but not wild type (TMS5), in order to avoid the risk of false positive results. By optimizing the condition of the polymerase chain reaction amplifications and restriction enzyme digestions, the newly designed markers could accurately distinguish between tms5 and TMS5. These markers can be applied in marker-assisted selection for breeding novel thermo-sensitive genic male sterile (TGMS) lines, as well as to rapidly identify the TGMS hybrid seed purity.


Subject(s)
Chimera/genetics , Genes, Plant , Genetic Markers , Oryza/genetics , Plant Breeding , Plant Infertility/genetics , Chromosome Mapping , Crosses, Genetic , DNA Primers/chemical synthesis , DNA Restriction Enzymes/genetics , Nucleic Acid Amplification Techniques , Seeds/genetics
3.
Genet Mol Res ; 15(1)2016 Jan 29.
Article in English | MEDLINE | ID: mdl-26909932

ABSTRACT

Tobacco germplasm samples with various levels of resistance to bacterial wilt were selected to construct F1 combinations of parental inbred lines and orthogonal diallel crosses using samples collected in 2009 (15 germplasms), 2010 (15 germplasms), and 2011 (16 germplasms). A total of 1/2P (P + 1) experimental materials were used for analysis. Based on the analyses of major and minor locus groups, genetic effects on the incidence rate and index of bacterial wilt in tobacco were investigated on the 15th and 25th day during the early stage. Significant effects were observed in major locus groups, but not in minor locus groups. Specifically, adjacent major locus groups (J1 = 13,056 and J1 = 13,055; J1 = 14,080 and J1 = 14,079) were detected in both the first and second analyses with considerable effects. Based on the additive effects of minor locus groups on the rate and index of bacterial wilt, the effects on the incidence rates of Yunyan 85, DB101, and RG11 as well as the effects on the disease index of the latter two germplasms reached the maximum. This was consistent with the disease resistance indicators of these tobacco varieties in the field (corresponding broad heritability >20%). Genetic homozygous dominant loci (+ +) increased the rate of bacterial wilt (susceptible), whereas homozygous recessive loci (- -) reduced the index of bacterial wilt (resistant) with considerable additive effects and low dominant effects, suggesting that the inheritance of the bacterial wilt rate and index in tobacco mainly relies on additive inheritance.


Subject(s)
Disease Resistance/genetics , Nicotiana/genetics , Plant Diseases/genetics , Quantitative Trait Loci , Alleles , Disease Resistance/immunology , Genetic Linkage , Homozygote , Inheritance Patterns , Models, Genetic , Plant Diseases/immunology , Ralstonia solanacearum/growth & development , Ralstonia solanacearum/pathogenicity , Seed Bank , Nicotiana/immunology , Nicotiana/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL