Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 277
Filter
1.
J Hazard Mater ; 479: 135702, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39217932

ABSTRACT

Lipid remodeling is crucial for various cellular activities and the stress tolerance of plants; however, little is known about the lipid dynamics induced by the heavy metal cadmium (Cd). In this study, we investigated the phospholipid profiles in rice (Oryza sativa) under Cd exposure. We observed a significant decline in the total amounts of phosphatidylcholine and phosphatidylserine, contrasted with an elevation in phosphatidic acid (PA) due to Cd stress. Additionally, Cd stress prompted the activation of phospholipase D (PLD) and induced the expression of PLDα1. OsPLDα1 knockout mutants (Ospldα1) showed increased sensitivity to Cd, characterized by a heightened accumulation of hydrogen peroxide in roots and diminished PA production following Cd treatment. Conversely, PLDα1-overexpressing (OsPLDα1-OE) lines demonstrated enhanced tolerance to Cd, with suppressed transcription of the respiratory burst oxidase homolog (Rboh) genes. The transcription levels of genes associated with Cd uptake and transport were accordingly modulated in Ospldα1 and OsPLDα1-OE plants relative to the wild-type. Taken together, our findings underscore the pivotal role of OsPLDα1 in conferring tolerance to Cd by modulating reactive oxygen species homeostasis and lipid remodeling in rice.

2.
Front Immunol ; 15: 1425351, 2024.
Article in English | MEDLINE | ID: mdl-39229277

ABSTRACT

Background: Micronutrients play pivotal roles in modulating various aspects of the immune response. However, the existing literature on the association between micronutrients and autoimmune thyroiditis (AIT) remains limited and contentious. To address this gap, we conducted Mendelian randomization (MR) to investigate potential links between genetically predicted concentrations of six micronutrients (Copper (Cu), Iron (Ir), Calcium (Ca), Vitamin D (VD), Vitamin C (VC), Zinc (Zn)) and the risk of AIT. Method: Utilizing summary statistics from genome-wide association studies (GWAS) in individuals of European descent, we employed MR methodologies to elucidate the interplay between micronutrients and AIT. Three distinct MR techniques were employed: Inverse Variance Weighted (IVW), MR-Egger regression, and Weighted Median Estimator (WME). Additionally, we evaluated outcome heterogeneity using Cochran's Q statistic and assessed pleiotropy using the MR-Egger intercept. Result: IVW analysis revealed no substantial evidence supporting a significant impact of genetically predicted micronutrient concentrations on AIT risk (Cu: OR = 0.918, P = 0.875; Ir: OR = 0.653, P = 0.264; Ca: OR = 0.964, P = 0.906; VD: OR = 0.717, P = 0.378; VC: OR = 0.986, P = 0.875; Zn: OR = 0.789, P = 0.539). Cochran's Q test for IVW indicated no notable heterogeneity. Moreover, the MR-Egger intercept method suggested the presence of horizontal pleiotropy between serum VC levels and AIT (MR-Egger intercept = -0.037, p = 0.026), while no such pleiotropy was observed for other micronutrients. Conclusion: Our MR analysis does not support a causal relationship between genetically predicted concentrations of six micronutrients (Cu, Ir, Ca, VD, VC, and Zn) and the risk of AIT.


Subject(s)
Genome-Wide Association Study , Mendelian Randomization Analysis , Micronutrients , Thyroiditis, Autoimmune , Humans , Micronutrients/blood , Thyroiditis, Autoimmune/genetics , Thyroiditis, Autoimmune/blood , Risk Factors , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease , Zinc/blood
3.
Sci Total Environ ; : 176047, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39241874

ABSTRACT

The relationship between plants and soil microbial communities is complex and subtle, with microbes playing a crucial role in plant growth. Autochthonous bioaugmentation and nutrient biostimulation are promising bioremediation methods for herbicides in contaminated agricultural soils, but how microbes interact to promote biodegradation and plant growth on barren fields, especially in response to the treatment of the herbicide bromoxynil after wheat seedlings, remains poorly understood. In this study, we explored the microbial community reassembly process from the three-leaf stage to the tillering stage of wheat and put forward the idea of using the overlapping results of three methods (network Zi-Pi analysis, LEfSe analysis, and Random Forest analysis) as keystones for the simplification and optimization of key microbial species in the soil. Then we used genome-scale metabolic models (GSMMs) to design a targeted synthetic microbiome for promoting wheat seedling growing. The results showed that carbon source was more helpful in enriching soil microbial diversity and promoting the role of functional microbial communities, which facilitated the degradation of bromoxynil. Designed a multifunctional synthetic consortium consisting of seven non-degraders which unexpectedly assisted in the degradation of indigenous bacteria, which increased the degradation rate of bromoxynil by 2.05 times, and when adding nutritional supplementation, it increased the degradation rate by 3.65 times. In summary, this study provides important insights for rational fertilization and precise microbial consortium management to improve plant seedling growth in contaminated fields.

4.
J Hazard Mater ; 478: 135559, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39154470

ABSTRACT

Chromium (Cr) soil contamination is a critical global environmental concern, with hexavalent chromium (Cr[VI]) being especially perilous due to its high mobility, bioavailability, and phytotoxicity. This poses a significant threat to the cultivation of crops, particularly rice, where the mechanisms of Cr(VI) absorption remain largely unexplored. This study uncovered a competitive interaction between Cr(VI) and essential nutrients-sulfate and phosphate during the uptake process. Notably, deficiencies in sulfate and phosphate were associated with a marked increase in Cr(VI) accumulation in rice, reaching up to 76.5 % and 77.7 %, respectively. Employing q-PCR, this study identified significant up-regulation of the sulfate transporter gene, OsSultr1;2, and the phosphate transporter gene, OsPht1;1, in response to Cr(VI) stress. Genetic knockout studies have confirmed the crucial role of OsSultr1;2 in Cr(VI) uptake, with its deletion leading to a 36.1 % to 69.6 % decrease in Cr uptake by rice roots. Similarly, the knockout of OsPht1;1 resulted in an 18.1 % to 25.7 % decrease in root Cr accumulation. These findings highlight the key role of the sulfate transporter OsSultr1;2 in Cr(VI) uptake, with phosphate transporters also contributing significantly to the process. These insights are valuable for developing rice varieties with reduced Cr(VI) accumulation, ensuring the safety of rice grain production.


Subject(s)
Chromium , Oryza , Phosphate Transport Proteins , Phosphates , Soil Pollutants , Sulfates , Oryza/metabolism , Oryza/genetics , Oryza/growth & development , Chromium/metabolism , Chromium/toxicity , Phosphate Transport Proteins/metabolism , Phosphate Transport Proteins/genetics , Sulfates/metabolism , Phosphates/metabolism , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Anion Transport Proteins/metabolism , Anion Transport Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Sulfate Transporters/metabolism , Sulfate Transporters/genetics , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/drug effects , Gene Expression Regulation, Plant/drug effects
5.
J Agric Food Chem ; 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39213533

ABSTRACT

Achieving consensus about the rhizosphere effect on soil antibiotic resistomes is challenging due to the variability in antibiotic concentrations, sources, and the elusory underlying mechanisms. Here, we characterized the antibiotic resistomes in both the rhizosphere and bulk soils of soybean plants grown in environments with varying levels of antibiotic contamination, using sulfamethoxazole (SMX) as a model compound. We also investigated the factors influencing resistome profiles. Soybean cultivation altered the structure of antibiotic-resistant genes (ARGs) and increased their absolute abundance. However, the rhizosphere effect on the relative abundance of ARGs was dependent on SMX concentrations. At low SMX levels, the rhizosphere effect was characterized by the inhibition of antibiotic-resistant bacteria (ARBs) and the promotion of sensitive bacteria. In contrast, at high SMX levels, the rhizosphere promoted the growth of ARBs and facilitated horizontal gene transfer of ARGs. This novel mechanism provides new insights into accurately assessing the rhizosphere effect on soil antibiotic resistomes.

6.
J Hazard Mater ; 478: 135633, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39182296

ABSTRACT

Contamination of rice by arsenic represents a significant human health risk. Roxarsone -bearing poultry manure is a major pollution source of arsenic to paddy soils. A mesocosm experiment plus a laboratory experiment was conducted to reveal the role of rainwater-borne H2O2 in the degradation of roxarsone in paddy rice soils. While roxarsone could be degraded via chemical oxidation by Fenton reaction-derived hydroxyl radical, microbially mediated decomposition was the major mechanism. The input of H2O2 into the paddy soils created a higher redox potential, which favored certain roxarsone-degrading and As(III)-oxidizing bacterial strains and disfavored certain As(V)-reducing bacterial strains. This was likely to be responsible for the enhanced roxarsone degradation and transformation of As(III) to As(V). Fenton-like reaction also tended to enhance the formation of Fe plaque on the root surface, which acted as a filter to retain As. The dominance of As(V) in porewater, combined with the filtering effect of Fe plaque significantly reduced the uptake of inorganic As by the rice plants and consequently its accumulation in the rice grains. The findings have implications for developing management strategies to minimize the negative impacts from the application of roxarsone-containing manure for fertilization of paddy rice soils.


Subject(s)
Arsenic , Hydrogen Peroxide , Oryza , Rain , Roxarsone , Soil Pollutants , Oryza/metabolism , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/metabolism , Roxarsone/metabolism , Roxarsone/chemistry , Arsenic/metabolism , Arsenic/chemistry , Soil Pollutants/metabolism , Soil Pollutants/chemistry , Manure , Iron/chemistry , Iron/metabolism , Biological Availability , Soil Microbiology , Biodegradation, Environmental , Soil/chemistry
7.
J Hazard Mater ; 478: 135431, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39128146

ABSTRACT

Recently, there has been increasing concern regarding the emergence of bisphenol S analogues (BPSs) due to their potential toxicity. However, their exposure levels and associated health risks in susceptible populations remain unknown. In our study, we analyzed bisphenol A (BPA), along with 11 common BPA analogues (BPAs), and nine emerging BPSs in urine samples collected from 381 pregnant women in South China. All nine BPSs were first detected in pregnant women's urine. In addition to BPA, two BPAs, three BPSs including Diphenylsulfone (DPS), Bis(phenylsulfonyl)phenol (DBSP) and Bis(3-allyl-4-hydroxyphenyl)sulfone (TGSA), were identified as the predominant bisphenols, with detection frequencies ranging from 53-100 %. BPA still exhibited the highest median concentration at 0.624 ng/mL, followed by DPS (0.169 ng/mL), BPS (0.063 ng/mL) and DBSP (0.023 ng/mL). Importantly, mothers with higher levels of BPA, DBSP, DPS, and TGSA in their urine are statistically more likely to give birth to premature infants with shorter lengths at birth or smaller head circumference (p < 0.05). Although the median exposure to 21 bisphenols did not exceed the tolerable daily intake (TDI) of BPA, it did surpass the recently proposed BPA TDI (0.2 ng/kg bw/day) by a factor ranging from 1.1-99 times. This study signifies the first report unveiling the prevalence of multiple bisphenols, particularly emerging BPSs, in the urine of pregnant women in South China.


Subject(s)
Phenols , Sulfones , Humans , Female , Phenols/urine , Phenols/toxicity , Pregnancy , Sulfones/toxicity , China , Adult , Young Adult , Benzhydryl Compounds/urine , Maternal Exposure/adverse effects , Environmental Pollutants/urine , Environmental Pollutants/toxicity
8.
Environ Sci Technol ; 58(29): 12966-12975, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38990074

ABSTRACT

Urban blue-green infrastructure (BGI) offers a multitude of ecological advantages to residents, thereby playing a pivotal role in fortifying urban resilience and fostering the development of climate-resilient cities. Nonetheless, current research falls short of a comprehensive analysis of BGI's overall potential for carbon reduction and its indirect carbon reduction impact. To fill this research gap, we utilized the integrated valuation of ecosystem services and trade-offs model and remote sensing estimation algorithm to quantify the direct carbon sequestration and resultant indirect carbon reduction facilitated by the BGI within the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) (China). To identify the regions that made noteworthy contributions to carbon offsets and outliers, spatial autocorrelation analysis was also employed. The findings of this study reveal that in 2019, the BGI within the study area contributed an overall carbon offset of 1.5 × 108 t·C/yr, of which 3.5 × 107 and 11.0 × 107 t·C/yr were the result of direct carbon sequestration and indirect carbon reduction, respectively. The GBA's total CO2 emissions were 1.1 × 108 t in 2019. While the direct carbon sequestration offset 32.0% of carbon emissions, the indirect carbon reduction mitigated 49.9% of potential carbon emissions. These results highlight the critical importance of evaluating BGI's indirect contribution to carbon reduction. The findings of this study provide a valuable reference for shaping management policies that prioritize the protection and restoration of specific areas, thereby facilitating the harmonized development of carbon offset capabilities within urban agglomerations.


Subject(s)
Carbon Sequestration , Carbon , Ecosystem , Cities , China
9.
Inorg Chem ; 63(34): 15679-15691, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-38972034

ABSTRACT

Fe oxide or Fe0-based materials display weak removal capacity for Pb(II), especially in the presence of Cd(II), and the electronic-scale mechanisms are not reported. In this study, Fe3C(220) modified black carbon (BC) [Fe3C(220)@BC] with high adsorption and selectivity for Pb(II) from industrial wastewater with Cd(II) was developed. The quantitative experiment suggested that Fe species accounted for 80.5-100 and 18.4-33.8% of Pb(II) and Cd(II) removal, respectively. Based on X-ray absorption near-edge structure analysis, 57.3% of adsorbed Pb2+ was reduced to Pb0; however, 61.6% of Cd2+ existed on Fe3C@BC. Density functional theory simulation unraveled that Cd(II) adsorption was attributed to the cation-π interaction with BC, whereas that of Pb(II) was ascribed to the stronger interactions with different Fe phases following the order: Fe3C(220) > Fe0(110) > Fe3O4(311). Crystal orbital bond index and Hamilton population analyses were innovatively applied in the adsorption system and displayed a unique discovery: the stronger Pb(II) adsorption on Fe phases was mediated by a combination of covalent and ionic bonding, whereas ionic bonding was mainly accounted for Cd(II) adsorption. These findings open a new chapter in understanding the functions of different Fe phases in mediating the fate and transport of heavy metals in both natural and engineered systems.

10.
Bioresour Technol ; 408: 131159, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39067711

ABSTRACT

Rice husk is a locally available biomass for preparation of adsorbents to deal with cadmium (Cd) contamination in paddy system. In this study, phosphorylation of rice husk using H3PO4 and NH4H2PO4 was carried out in the presence of urea at 165℃ to obtain APB-C and NPB-C, respectively. According to the material characterizations, phosphonyl groups were successfully grafted on the rice husk. Both APB-C and NPB-C had high performance for Cd(II) adsorption with the capacities of 146 and 129 mg/g, respectively. The main mechanism of Cd(II) adsorption was ion exchange with NH4+. The adsorption capacity was linearly corelated with phosphorus content (R2 = 0.9997), while the Langmuir constant had high correlation efficient (R2 = 0.996) with phosphonyl group percentage. Further quantum chemical calculation showed higher interaction energy between Cd(II) and phosphonyl group than other groups. These results indicated that phosphonyl group governed Cd(II) adsorption on phosphorylated biomass.


Subject(s)
Cadmium , Oryza , Oryza/chemistry , Cadmium/chemistry , Adsorption , Phosphorylation , Kinetics , Hydrogen-Ion Concentration
11.
Chemosphere ; 363: 142936, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39067828

ABSTRACT

Endocrine-disrupting chemicals (EDCs) are pervasive in the environment, prompting significant public concern regarding human exposure to these pollutants. In this study, we analyzed the levels of various endocrine-disrupting compounds, including parabens (PBs), benzophenones (BzPs), triclocarban (TCC) and triclosan (TCS), across 565 urine samples collected from residents of South China. All 11 target chemicals were detected at relatively high frequencies (41-100%), with the most prevalent ones being 3,4-dihydroxybenzoic acid (5.39 ng/mL), methyl-paraben (5.12 ng/mL), ethyl-paraben (3.11 ng/mL) and triclosan (0.978 ng/mL). PBs emerged as the most predominant group with a median concentration of 32.2 ng/mL, followed by TCs (sum of TCC and TCS, 0.998 ng/mL) and BzPs (0.211 ng/mL). Notably, urinary concentrations of PBs in adults were significantly higher (p < 0.01) compared to children, while BzPs and TCs were elevated in children (p < 0.001). The increased presence of BzPs and TCs in children is a cause for concern, given their heightened sensitivity and vulnerability to chemicals. Significant correlations were found between urinary target compounds and demographic factors, including gender, age and body mass index. Specifically, females, younger adults (18 ≤ age ≤ 35) and individuals with under/normal weight (16 ≤ BMI ≤ 23.9) were found to have higher exposure levels to EDCs, as indicated by the median values of their estimated daily intakes. Despite these higher levels still being lower than the acceptable daily intake thresholds, the health risks stemming from simultaneous exposure to these EDCs must not be overlooked.


Subject(s)
Benzophenones , Carbanilides , Endocrine Disruptors , Environmental Exposure , Environmental Pollutants , Parabens , Triclosan , Humans , Carbanilides/urine , Parabens/analysis , Triclosan/urine , Child , China , Benzophenones/urine , Adult , Female , Male , Endocrine Disruptors/urine , Environmental Pollutants/urine , Environmental Exposure/statistics & numerical data , Environmental Exposure/analysis , Young Adult , Adolescent , Middle Aged , Child, Preschool
12.
Water Res ; 262: 122051, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39024668

ABSTRACT

Serious arsenic (As) contaminations could commonly result from the oxidative dissolution of As-containing sulfide minerals, such as arsenopyrite (FeAsS). Pyrite (Py) and calcite (Cal) are two typically co-existing reactive minerals and represent different geological scenarios. Previous studies have shown that a high proportion of Py can generate a stronger galvanic effect and acid dissolution, thereby significantly promoting the release of arsenic. However, this conclusion overlooks calcite's antagonistic effect on the release of As in the natural environment. That antagonistic effect could remodel the linear relationship of pyrite on the oxidative dissolution of arsenopyrite, thus altering the environmental risk of As. We examined As release from arsenopyrite along a gradient of Py to Cal molar ratios (Py:Cal). The results showed that the lowest As release from arsenopyrite was surprisingly found in co-existing Py and Cal systems than in the singular Cal system, let alone in the singular Py system. This phenomenon indicated an interesting possibility of Py assistance to Cal inhibition of As release, though Py has always been regarded as a booster, also evidenced in this research, for As release from arsenopyrite. In singular systems of Py and Cal, As continued to be released for 60 days. However, in co-existing Py and Cal systems, As was released non-linearly in three stages over time: initial release (0-1 Day), immobilization (1-15 Days), and subsequent re-release (>15 Days). This is a new short-term natural attenuation stage for As, but over time, this stage gradually collapses. During the re-release stage (> 15 Days), a higher molar ratio of Py:Cal (increasing from 1:9 to 9:1) results in a lower rate constant k (mg·L-1·h-1) of As release (range from 0.0011 to 0.0002), and a higher abundance of secondary minerals formed (up to 26 mg/g goethite and hematite at Py: Cal=9:1). This demonstrates that increasing the Py:Cal molar ratio results in the formation of more secondary minerals which compensate for the higher potential antagonistic mechanisms generated by pyrites, such as acid dissolution and galvanic effect. These results explain the mechanisms of the high-risk characteristics of As both in acidic mine drainage and karst aquifers and discover the lowest risk in pyrite and calcite co-existing regions. Moreover, we emphasize that reactive minerals are important variables that can't be ignored in predicting As pollution in the future.


Subject(s)
Arsenic , Arsenicals , Calcium Carbonate , Iron Compounds , Iron , Minerals , Sulfides , Minerals/chemistry , Sulfides/chemistry , Iron Compounds/chemistry , Arsenicals/chemistry , Calcium Carbonate/chemistry , Iron/chemistry , Solubility , Water Pollutants, Chemical/chemistry , Oxidation-Reduction
13.
J Hazard Mater ; 477: 135242, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39032184

ABSTRACT

Miscanthus is a common pioneer plant with abundant genetic variation in abandoned mines in southern China. However, the extent to which genetic differentiation among species modulates rhizosphere bacterial communities remains unclear. Miscanthus samples were collected from 26 typical abandoned heavy-metal mines with different soil types in southern China, tested using 14 pairs of simple sequence repeats (SSR) primers, and classified into two genotypes based on Nei's genetic distance. The structure and diversity of rhizosphere bacterial communities were examined using 16 S rRNA sequencing. The results showed that among the factors affecting the rhizosphere bacterial community structure of Miscanthus samples, the role of genotype was not significant, and geographical conditions were the most important factors, followed by pH and total organic carbon (TOC). The process of rhizospheric community assembly varied among different genotypes; however, the recruited species and their abundances were similar. Collectively, we provided an approach based on genetic differentiation to quantify the relative contribution of genotypes to the rhizosphere bacterial community, demonstrating that genotypes contribute less than soil conditions. Our findings provide new insights into the role of host genetics in the ecological processes of plant rhizosphere bacterial communities in abandoned mines and provide theoretical support for microbe-assisted phytoremediation.


Subject(s)
Bacteria , Genotype , Metals, Heavy , Poaceae , Rhizosphere , Soil Microbiology , Soil Pollutants , Metals, Heavy/toxicity , Poaceae/microbiology , Bacteria/genetics , Bacteria/classification , RNA, Ribosomal, 16S/genetics , Biodegradation, Environmental , Mining , China
14.
Sci Total Environ ; 949: 175009, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39053533

ABSTRACT

The heavy metals (HMs) spatial distribution in soil is intricately shaped by aggregation processes involving chemical reactions and biological activities, which modulate HMs toxicity, migration, and accumulation. Pioneer plants play a central role in preventing HMs at source, yet the precise mechanisms underlying their involvement in soil aggregation remain unclear. This study investigates HMs distribution within rhizosphere and bulk soil aggregates of Miscanthus sp. grown in tailings to elucidate the impact of root exudates (REs) and rhizosphere microbes. The results indicate that Miscanthus sp. enhance soil stability, increasing the proportion of macroaggregates by 4.06 %-9.78 %. HMs tend to concentrate in coarse-aggregates, particularly within rhizosphere environments, while diminishing in fine-aggregates. Under HMs stress, lipids and lipid-like molecules are the most abundant REs produced by Miscanthus sp., accounting for under up to 26.74 %. These REs form complex with HMs, promoting microaggregates formation. Charged components such as sugars and amino acids further contribute to soil aggregation. REs also regulates rhizosphere bacteria and fungi, with Acidobacteriota, Chloroflexi were the dominant bacterial phyla, while Ascomycota and Basidiomycota dominate the fungal community. The synergistic effect of REs and microorganisms impact soil organic matter and nutrient content, facilitating HMs nanoparticle heteroaggregation and macroaggregates formation. Consequently, soil structure and REs shape the distribution of HMs in soil aggregation. Pioneer plants mediate REs interaction with rhizosphere microbes, promoting the distribution of HMs into macroaggregates, leading to immobilization. This study sheds light on the role of pioneer plants in regulating soil HMs, offering valuable insights for soil remediation strategies.


Subject(s)
Metals, Heavy , Microbiota , Plant Roots , Poaceae , Rhizosphere , Soil Microbiology , Soil Pollutants , Soil , Soil Pollutants/metabolism , Plant Roots/microbiology , Soil/chemistry , Plant Exudates , Bacteria
15.
J Environ Manage ; 366: 121751, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38972191

ABSTRACT

Pyrolysis stands out as an effective method for the disposal of phytoremediation residues in abandoned mines, yielding a valuable by-product, biochar. However, the environmental application of biochar derived from such residues is limited by the potential environmental risks of heavy metals. Herein, Miscanthus sp. residues from abandoned mines were pyrolyzed into biochars at varied pyrolysis temperatures (300-700 °C) to facilitate the safe reuse of phytoremediation residues. The results showed that pyrolysis significantly stabilizes heavy metals in biomass, with Cd exhibiting the most notable stabilization effect. Acid-soluble/exchangeable and reducible fractions of Cd decreased significantly from 69.91 % to 2.52 %, and oxidizable and residue fractions increased approximately 3.24 times at 700 °C. The environmental risk assessment indicated that biochar pyrolyzed over 500 °C pose lower environmental risk (RI < 30), making them optimal for the safe utilization of phytoremediation residues. Additionally, adsorption experiments suggested that biochars prepared at higher temperature (500-700 °C) exhibit superior adsorption capacity, attributed to alkalinity and precipitation effect. This study highlights that biochars produced by pyrolyzing Miscanthus sp. from abandoned mines above 500 °C hold promise for environmental remediation, offering novel insight into the reutilization of metal-rich biomass.


Subject(s)
Biodegradation, Environmental , Charcoal , Environmental Restoration and Remediation , Metals, Heavy , Mining , Charcoal/chemistry , Environmental Restoration and Remediation/methods , Soil Pollutants/chemistry , Biomass , Adsorption
16.
J Hazard Mater ; 475: 134580, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38865829

ABSTRACT

In this research, a new material, chitosan/polypyrrole (CS/PPy), was synthesized and linked with the Cr(VI)-reducing bacterial strain YL3 to treat Cr(VI)-polluted soil. The findings demonstrated that the synergistic application of strain YL3 and CS/PPy achieved the greatest reduction (99.6 %). During the remediation process, CS/PPy served as a mass-storage and sustained release agent in the soil, which initially decreased the toxic effects of high concentrations of Cr(VI) on strain YL3, thereby enhancing the Cr(VI) reduction efficiency of strain YL3. These combined effects significantly mitigated Cr(VI) stress in the soil and restored enzyme activities. Furthermore, wheat growth in the treated soil also significantly improved. High-throughput sequencing of the microorganisms in the treated soil revealed that CS/PPy was not only effective at removing Cr(VI) but also at preserving the original microbial diversity of the soil. This suggests that the combined treatment using strain YL3 and CS/PPy could rehabilitate Cr(VI)-contaminated soil, positioning CS/PPy as a promising composite material for future bioremediation efforts in Cr(VI)-contaminated soils.


Subject(s)
Biodegradation, Environmental , Chitosan , Chromium , Microbacterium , Polymers , Pyrroles , Soil Microbiology , Soil Pollutants , Soil Pollutants/metabolism , Chromium/metabolism , Chromium/chemistry , Chitosan/chemistry , Polymers/chemistry , Polymers/metabolism , Pyrroles/metabolism , Pyrroles/chemistry , Microbacterium/metabolism , Triticum/metabolism
17.
Curr Microbiol ; 81(8): 226, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38879829

ABSTRACT

A bacterium, designated strain T21T, that is non-motile, rod-shaped, and formed pale white colonies, was isolated from the sludge of a wastewater treatment plant's secondary sedimentation tank in China. Strain T21T could grow at 20-40 °C (optimum growth at 30 °C), pH 3.0-10.0 (optimum growth at pH 5.0) and in the presence of 0-8.0% (w/v) NaCl (optimum growth at 2.0%). Based on phylogenetic analysis of 16S rRNA gene sequences and genome sequences, the isolate belongs to the genus Tessaracoccus in the phylum Actinomycetota. It exhibited a close relationship with Tessaracoccus palaemonis J1M15T, Tessaracoccus defluvii LNB-140T, Tessaracoccus flavescens SST-39T, and Tessaracoccus coleopterorum HDW20T. The 16S rRNA gene sequence similarities are 99.8%, 97.9%, 97.9%, and 97.8%, respectively. The major cellular fatty acids were anteiso-C15:0 and C16:0. The main respiratory quinone was MK-9(H4). The polar lipids included phosphatidylglycerol, diphosphatidylglycerol, glycolipid, and phospholipid. Genome annotation of strain T21T predicted the presence of 2829 genes, of which 2754 are coding proteins and 59 are RNA genes. The genomic DNA G+C content was 69.2%. Based on the results of phylogenetic, phenotypic, chemotaxonomic, and genotypic analyses, we propose the name Tessaracoccus lacteus sp. nov. for this novel species within the genus Tessaracoccus. The type strain is T21T (=CCTCC AB 2023031T = KCTC 49936T).


Subject(s)
Base Composition , DNA, Bacterial , Fatty Acids , Phylogeny , RNA, Ribosomal, 16S , Sewage , Wastewater , RNA, Ribosomal, 16S/genetics , Sewage/microbiology , DNA, Bacterial/genetics , Fatty Acids/chemistry , Fatty Acids/analysis , Wastewater/microbiology , China , Bacterial Typing Techniques , Phospholipids/analysis , Sequence Analysis, DNA , Actinobacteria/genetics , Actinobacteria/classification , Actinobacteria/isolation & purification , Quinones/analysis
18.
J Environ Sci (China) ; 145: 205-215, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38844320

ABSTRACT

Thermal treatment can effectively decontaminate soils but alter their properties. Previous research mainly focused on volatile organic compounds and metals, i.e. Hg, neglecting non-volatile metal(loid)s. This study aimed to investigate Cd and As transformation during aerobic and anaerobic calcination. The results showed that both aerobic and anaerobic calcination increased soil pH by reducing soil organic matter (SOM) content, which also influenced the cation exchange capacity (CEC) and the leaching behavior of Cd and As in the soil. The total concentrations of Cd and As in the calcined soils varied depending on the calcination temperature and atmosphere. When the aerobic calcination temperature exceeded 700 °C, Cd volatilized as CdCl2, while anaerobic calcination at relatively low temperatures (600 °C) involved reductive reactions, resulting in the formation of metallic Cd with a lower boiling point. Similarly, As volatilized at 800 °C aerobically and 600 °C anaerobically. The formation of As-based minerals, particularly Ca3(AsO4)2, hindered its gasification, whereas anaerobic calcination promoted volatilization efficiency through the generation of C-As(III) based gaseous components with lower boiling points. Contrasting trends were observed in the TCLP-extractable Cd and As contents of the calcined soils. Over 70% of TCLP-extractable Cd contents were suppressed after thermal treatment, attributed to the elevated pH and reduced CEC of the soil, as well as volatilization. However, TCLP-extractable As contents increased with elevated temperatures, likely due to the desorption of AsO43- and re-adsorption of gaseous As2O3 during cooling. These findings have implications for assessing the environmental impact of thermal treatment and provide insights for remediation strategies concerning Cd and As-contaminated soils.


Subject(s)
Arsenic , Cadmium , Soil Pollutants , Soil , Cadmium/chemistry , Cadmium/analysis , Soil Pollutants/analysis , Soil Pollutants/chemistry , Arsenic/analysis , Arsenic/chemistry , Soil/chemistry , Environmental Restoration and Remediation/methods , Hot Temperature
19.
J Environ Sci (China) ; 144: 26-34, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38802235

ABSTRACT

Tri (2-chloropropyl) phosphate (TCPP) was an emerging contaminant of global concern because of its frequent occurrence, potential toxic effects, and persistence in the environment. Microbial degradation might be an efficient and safe removal method, but limited information was available. In this study, Providencia rettgeri was isolated from contaminated sediment and showed it could use TCPP as unique phosphorus source to promote growth, and decompose 34.7% of TCPP (1 mg/L) within 5 days. The microbial inoculation and the initial concentration of TCPP could affect the biodegradation efficient. Further study results indicated that TCPP decomposition by Providencia rettgeri was mainly via phosphoester bond hydrolysis, evidenced by the production of bis (2-chloropropyl) phosphate (C6H13Cl2PO4) and mono-chloropropyl phosphate (C3H8ClPO4). Both intracellular and extracellular enzymes could degrade TCPP, but intracellular degradation was dominant in the later reaction stage, and the presence of Cu2+ ions had a promoting effect. These findings developed novel insights into the potential mechanism of TCPP microbial degradation.


Subject(s)
Biodegradation, Environmental , Providencia , Providencia/metabolism , Phosphates/metabolism , Water Pollutants, Chemical/metabolism
20.
J Hazard Mater ; 472: 134345, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38696956

ABSTRACT

Biochar is widely accepted as a green and effective amendment for remediating heavy metals (HMs) contaminated soil, but its long-term efficiency and safety changes with biochar aging in fields. Currently, some reviews have qualitatively summarized biochar aging methods and mechanisms, aging-induced changes in biochar properties, and often ignored the potential eco-environmental risk during biochar aging process. Therefore, this review systematically summarizes the study methods of biochar aging, quantitatively compares the effects of different biochar aging process on its properties, and discusses the potential eco-environmental risk due to biochar aging in HMs contaminated soil. At present, various artificial aging methods (physical aging, chemical aging and biological aging) rather than natural field aging have been applied to study the changes of biochar's properties. Generally, biochar aging increases specific surface area (SSA), pore volume (PV), surface oxygen-containing functional group (OFGs) and O content, while decreases pH, ash, H, C and N content. Chemical aging method has a greater effect on the properties of biochar than other aging methods. In addition, biochar aging may lead to HMs remobilization and produce new types of pollutants, such as polycyclic aromatic hydrocarbons (PAHs), environmentally persistent free radicals (EPFRs) and colloidal/nano biochar particles, which consequently bring secondary eco-environmental risk. Finally, future research directions are suggested to establish a more accurate assessment method and model on biochar aging behavior and evaluate the environmental safety of aged biochar, in order to promote its wider application for remediating HMs contaminated soil.


Subject(s)
Charcoal , Metals, Heavy , Soil Pollutants , Charcoal/chemistry , Soil Pollutants/analysis , Soil Pollutants/chemistry , Metals, Heavy/analysis , Environmental Restoration and Remediation , Soil/chemistry , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL