Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 986
Filter
1.
Chaos ; 34(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949531

ABSTRACT

Higher-order interactions exist widely in mobile populations and are extremely important in spreading epidemics, such as influenza. However, research on high-order interaction modeling of mobile crowds and the propagation dynamics above is still insufficient. Therefore, this study attempts to model and simulate higher-order interactions among mobile populations and explore their impact on epidemic transmission. This study simulated the spread of the epidemic in a spatial high-order network based on agent-based model modeling. It explored its propagation dynamics and the impact of spatial characteristics on it. Meanwhile, we construct state-specific rate equations based on the uniform mixing assumption for further analysis. We found that hysteresis loops are an inherent feature of high-order networks in this space under specific scenarios. The evolution curve roughly presents three different states with the initial value change, showing different levels of the endemic balance of low, medium, and high, respectively. Similarly, network snapshots and parameter diagrams also indicate these three types of equilibrium states. Populations in space naturally form components of different sizes and isolations, and higher initial seeds generate higher-order interactions in this spatial network, leading to higher infection densities. This phenomenon emphasizes the impact of high-order interactions and high-order infection rates in propagation. In addition, crowd density and movement speed act as protective and inhibitory factors for epidemic transmission, respectively, and depending on the degree of movement weaken or enhance the effect of hysteresis loops.


Subject(s)
Epidemics , Humans , Influenza, Human/epidemiology , Influenza, Human/transmission , Computer Simulation
2.
Bioorg Chem ; 150: 107605, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38971095

ABSTRACT

The dorsal root ganglion (DRG) is the primary neuron responsible for transmitting peripheral pain signals to the central nervous system and plays a crucial role in pain transduction. Modulation of DRG excitability is considered a viable approach for pain management. Neuronal excitability is intricately linked to the ion channels on the neurons. The small and medium-sized DRG neurons are chiefly engaged in pain conduction and have high levels of TTX-S sodium channels, with Nav1.7 accounting for approximately 80% of the current. Voltage-gated sodium channel (VGSC or Nav) blockers are vital targets for the management of central nervous system diseases, particularly chronic pain. VGSCs play a key role in controlling cellular excitability. Clinical research has shown that Nav1.7 plays a crucial role in pain sensation, and there is strong genetic evidence linking Nav1.7 and its encoding gene SCN9A gene to painful disorders in humans. Many studies have shown that Nav1.7 plays an important role in pain management. The role of Nav1.7 in pain signaling pathways makes it an attractive target for the potential development of new pain drugs. Meanwhile, understanding the architecture of Nav1.7 may help to develop the next generation of painkillers. This review provides updates on the recently reported molecular inhibitors targeting the Nav1.7 pathway, summarizes their structure-activity relationships (SARs), and discusses their therapeutic effects on painful diseases. Pharmaceutical chemists are working to improve the therapeutic index of Nav1.7 inhibitors, achieve better analgesic effects, and reduce side effects. We hope that this review will contribute to the development of novel Nav1.7 inhibitors as potential drugs.

3.
Cell Death Dis ; 15(6): 457, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937439

ABSTRACT

In eukaryotes, the nucleolus is the critical non-membranous organelle within nuclei that is responsible for ribosomal DNA (rDNA) transcription and ribosome biogenesis. The transcription of rDNA, a rate-limiting step for ribosome biogenesis, is tightly regulated to meet the demand for global protein synthesis in response to cell physiology, especially in neurons, which undergo rapid changes in morphology and protein composition during development and synaptic plasticity. However, it is unknown how the pre-initiation complex for rDNA transcription is efficiently assembled within the nucleolus in neurons. Here, we report that the nucleolar protein, coronin 2B, regulates rDNA transcription and maintains nucleolar function through direct interaction with upstream binding factor (UBF), an activator of RNA polymerase I transcriptional machinery. We show that coronin 2B knockdown impairs the formation of the transcription initiation complex, inhibits rDNA transcription, destroys nucleolar integrity, and ultimately induces nucleolar stress. In turn, coronin 2B-mediated nucleolar stress leads to p53 stabilization and activation, eventually resulting in neuronal apoptosis. Thus, we identified that coronin 2B coordinates with UBF to regulate rDNA transcription and maintain proper nucleolar function in neurons.


Subject(s)
Apoptosis , Cell Nucleolus , Neurons , Pol1 Transcription Initiation Complex Proteins , Apoptosis/genetics , Cell Nucleolus/metabolism , Neurons/metabolism , Animals , Pol1 Transcription Initiation Complex Proteins/metabolism , Pol1 Transcription Initiation Complex Proteins/genetics , Humans , DNA, Ribosomal/metabolism , DNA, Ribosomal/genetics , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Transcription, Genetic , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Mice , Stress, Physiological
4.
Adv Drug Deliv Rev ; 211: 115364, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38936664

ABSTRACT

The challenges of drug development in pediatric, pregnant and geriatric populations are a worldwide concern shared by regulatory authorities, pharmaceutical companies, and healthcare professionals. Model-informed drug development (MIDD) can integrate and quantify real-world data of physiology, pharmacology, and disease processes by using modeling and simulation techniques to facilitate decision-making in drug development. In this article, we reviewed current MIDD policy updates, reflected on the integrity of physiological data used for MIDD and the effects of physiological changes on the drug PK, as well as summarized current MIDD strategies and applications, so as to present the state of the art of MIDD in pediatric, pregnant and geriatric populations. Some considerations are put forth for the future improvements of MIDD including refining regulatory considerations, improving the integrity of physiological data, applying the emerging technologies, and exploring the application of MIDD in new therapies like gene therapies for special populations.

5.
Int J Biol Macromol ; : 133176, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38880449

ABSTRACT

The present study assessed the impact of guar gum (GG) on the physical and chemical attributes and the in vitro digestibility of maize starch (MS), pea starch (PS), and sweet potato starch (SPS) subjected to extrusion treatment. Starch with 25 % moisture content and combined with GG in a 9:1 ratio was selected for extrusion. Scanning electron microscopy and differential scanning calorimetry reveal that extrusion disrupts the ordered structure of starch and induces aggregation of starch granules, resulting in a more cohesive structure, and GG addition led to the further evolution of this structure into a more intricate and irregular form. Rheological assessments demonstrated a remarkable enhancement in the gelatinization characteristics of starch with GG addition, which led to elevated flow resistance and increased viscosity. On evaluating the in vitro digestive characteristics, we noted that adding GG to starch augmented the levels of slow-digestible starch and resistant starch. Consequently, this resulted in diminished digestibility and a lowered glycemic index. In summary, GG synergistically interacts with starch, forming intricately assimilable components. Moreover, the effects of extrusion vary across different starches, which proves advantageous for SPS and GG amalgamation, thereby enhancing their resistant components. Conversely, extrusion manifests contrasting outcomes for MS and PS.

6.
Acta Parasitol ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888726

ABSTRACT

BACKGROUND: In recent years, the trichomonosis in raccoon dogs in China had occurred frequently. Pentatrichomonas hominis had been described in raccoon dogs in China in some previous studies. PURPOSE TO REVEAL: whether raccoon dogs can be infected by other trichomonad species besides P. hominis, and clarify the prevalence and species distribution of trichomonad in raccoon dogs. METHODS: Herein, the 389 fecal samples were collected from farm-raised raccoon dogs in Hebei Province, all the samples were detected using the microscopic examination and several fecal samples containing trichomonad-like organisms were processed, cultured, stained, and photographed. Meanwhile, all the samples were screened by the species-specific nested PCR based on the small subunit rRNA (SSU rRNA) gene of P. hominis,Tritrichomonas foetus and Tetratrichomonas buttreyi, respectively, and all positive secondary PCR amplications obtained in this study were sequenced, aligned and analysed. RESULTS: 62 fecal samples (15.9%,62/389) were trichomonad-positive under light microscopy, and the trichomonad-like cells were clearly observed in the culture contents. The PCR results showed that 100 samples were trichomonad-positive, including 45 P. hominis-positive samples (11.6%,45/389), 32 T. foetus-positive samples (8.2%,32/389), and 33 T. buttreyi-positive samples (8.5%,33/389), respectively. Double mixed infections were observed in 10 samples. The prevalence of T. foetus and P. hominis were both significantly higher in raccoon dogs with diarrhea (13.9%, and 25.0%) than that in raccoon dogs without diarrhea (7.6%, and 9.3%) (p < 0.05).All samples confirmed as trichomonad-positive under microscopy were also found to be trichomonad-positive by PCR analysis. The sequencing and phylogenetic analysis demonstrated the sequences obtained in this study belonged to P. hominis, T. foetus and T. buttreyi SSU rRNA, respectively. Among them, the T. buttreyi SSU rRNA sequences obtained in this study harbored the new sequence polymorphisms. Based on preliminary morphological and molecular analyses, raccoon dogs are considered as the new host of T. foetus and T. buttreyi. CONCLUSION: This is the first report about the identifcation and prevalence of T. foetus and T. buttreyi in raccoon dogs in China, and the results increase our knowledge about the host range and prevalence of trichomonad species.

7.
J Transl Med ; 22(1): 571, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38879493

ABSTRACT

BACKGROUND: No reliable clinical tools exist to predict acute kidney injury (AKI) progression. We aim to explore a scoring system for predicting the composite outcome of progression to severe AKI or death within seven days among early AKI patients after cardiac surgery. METHODS: In this study, we used two independent cohorts, and patients who experienced mild/moderate AKI within 48 h after cardiac surgery were enrolled. Eventually, 3188 patients from the MIMIC-IV database were used as the derivation cohort, while 499 patients from the Zhongshan cohort were used as external validation. The primary outcome was defined by the composite outcome of progression to severe AKI or death within seven days after enrollment. The variables identified by LASSO regression analysis were entered into logistic regression models and were used to construct the risk score. RESULTS: The composite outcome accounted for 3.7% (n = 119) and 7.6% (n = 38) of the derivation and validation cohorts, respectively. Six predictors were assembled into a risk score (AKI-Pro score), including female, baseline eGFR, aortic surgery, modified furosemide responsiveness index (mFRI), SOFA, and AKI stage. And we stratified the risk score into four groups: low, moderate, high, and very high risk. The risk score displayed satisfied predictive discrimination and calibration in the derivation and validation cohort. The AKI-Pro score discriminated the composite outcome better than CRATE score, Cleveland score, AKICS score, Simplified renal index, and SRI risk score (all P < 0.05). CONCLUSIONS: The AKI-Pro score is a new clinical tool that could assist clinicians to identify early AKI patients at high risk for AKI progression or death.


Subject(s)
Acute Kidney Injury , Cardiac Surgical Procedures , Disease Progression , Humans , Acute Kidney Injury/etiology , Acute Kidney Injury/diagnosis , Female , Male , Cardiac Surgical Procedures/adverse effects , Middle Aged , Aged , Risk Factors , Cohort Studies , Severity of Illness Index , ROC Curve , Risk Assessment , Prognosis
8.
Front Endocrinol (Lausanne) ; 15: 1380163, 2024.
Article in English | MEDLINE | ID: mdl-38846488

ABSTRACT

Background: Although the importance and benefit of heme oxygenase-1 (HO-1) in diabetes rodent models has been known, the contribution of HO-1 in the pre-diabetic patients with hyperlipidemia risk still remains unclear. This cross-sectional study aims to evaluate whether HO-1 is associated with hyperlipidemia in pre-diabetes. Methods: Serum level of HO-1 was detected using commercially available ELISA kit among 1,425 participants aged 49.3-63.9 with pre-diabetes in a multicenter Risk Evaluation of cAncers in Chinese diabeTic Individuals: A lONgitudinal (REACTION) prospective observational study. Levels of total cholesterol (TC) and triglyceride (TG) were measured and used to defined hyperlipidemia. The association between HO-1 and hyperlipidemia was explored in different subgroups. Result: The level of HO-1 in pre-diabetic patients with hyperlipidemia (181.72 ± 309.57 pg/ml) was obviously lower than that in pre-diabetic patients without hyperlipidemia (322.95 ± 456.37 pg/ml). High level of HO-1 [(210.18,1,746.18) pg/ml] was negatively associated with hyperlipidemia (OR, 0.60; 95% CI, 0.37-0.97; p = 0.0367) after we adjusted potential confounding factors. In subgroup analysis, high level of HO-1 was negatively associated with hyperlipidemia in overweight pre-diabetic patients (OR, 0.50; 95% CI, 0.3-0.9; p = 0.034), especially in overweight women (OR, 0.42; 95% CI, 0.21-0.84; p = 0.014). Conclusions: In conclusion, elevated HO-1 level was negatively associated with risk of hyperlipidemia in overweight pre-diabetic patients, especially in female ones. Our findings provide information on the exploratory study of the mechanism of HO-1 in hyperlipidemia, while also suggesting that its mechanism may be influenced by body weight and gender.


Subject(s)
Heme Oxygenase-1 , Hyperlipidemias , Prediabetic State , Humans , Hyperlipidemias/blood , Hyperlipidemias/epidemiology , Female , Male , Cross-Sectional Studies , Middle Aged , Heme Oxygenase-1/blood , Prediabetic State/blood , Prediabetic State/epidemiology , Prospective Studies , Longitudinal Studies , Risk Factors , China/epidemiology
9.
Sci Adv ; 10(24): eadm8449, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38865459

ABSTRACT

The accumulation of protein aggregates is a hallmark of many diseases, including Alzheimer's disease. As a major pillar of the proteostasis network, autophagy mediates the degradation of protein aggregates. The autophagy cargo receptor p62 recognizes ubiquitin on proteins and cooperates with TAX1BP1 to recruit the autophagy machinery. Paradoxically, protein aggregates are not degraded in various diseases despite p62 association. Here, we reconstituted the recognition by the autophagy receptors of physiological and pathological Tau forms. Monomeric Tau recruits p62 and TAX1BP1 via the sequential actions of the chaperone and ubiquitylation machineries. In contrast, Tau fibrils from Alzheimer's disease brains are recognized by p62 but fail to recruit TAX1BP1. This failure is due to the masking of fibrils ubiquitin moieties by p62. Tau fibrils are resistant to deubiquitylation, and, thus, this nonproductive interaction of p62 with the fibrils is irreversible. Our results shed light on the mechanism underlying autophagy evasion by protein aggregates and their consequent accumulation in disease.


Subject(s)
Autophagy , Sequestosome-1 Protein , Ubiquitination , tau Proteins , Humans , tau Proteins/metabolism , tau Proteins/chemistry , Sequestosome-1 Protein/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Protein Binding , Protein Aggregates , Intracellular Signaling Peptides and Proteins/metabolism , Ubiquitin/metabolism , Neoplasm Proteins
10.
Clin Transl Oncol ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38867026

ABSTRACT

BACKGROUND: The prognostic significance of metastasis-associated in colon cancer-1 (MACC1) has been explored in a variety of malignancies. However, its clinical relevance in patients with gastric cancer (GC) is limited, also remains controversial. METHOD: In this study, we retrospectively evaluated the prognostic value of lesion MACC1 expression in 347 GC patients. Lesion MACC1 expression was analyzed with immunohistochemistry and grouped as MACC1low (n = 172) and MACC1high (n = 175) cases. RESULTS: Data revealed that the degree of MACC1 expression is not related to patient sex, age and disease stage (all p > 0.05). Survival analysis showed that only post-operation advanced pT (p = 0.018), pN (p < 0.001), pM (p = 0.001) and AJCC stages (p < 0.001) are significantly associated with shorter survival, while no obvious difference was observed between MACC1low and MACC1high cases (p = 0.158). However, we found that survival for female (p = 0.032), older (p = 0.028), and early disease stage (pT stage I + II, p = 0.033) patients with MACC1high are remarkably worse than those with MACC1low. CONCLUSION: In summary, our findings revealed that, though MACC1 expression is not associated with the survival of the whole cohort, the prognostic risk stratification value of lesion MACC1 expression in subgroups of patients with gastric cancer should be noted.

11.
Org Lett ; 26(23): 4945-4952, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38832831

ABSTRACT

Described herein is an efficient copper-catalyzed tandem alkyne indolylcupration-initiated 1,2-indole migration/6π-electrocyclic reaction of allene-ynamides with indoles by the in situ-generated metal carbenes. This method allows the efficient synthesis of valuable indole-fused spirobenzo[f]indole-cyclohexanes with high regio- and stereoselectivity. In addition, this reaction affords rapid access to the functionalized spirobenzo[f]indole-cyclohexanes in the absence of indoles by a presumable 5-exo-dig cyclization/Friedel-Crafts alkylation via copper-containing all-carbon 1,4-dipoles.

12.
MycoKeys ; 106: 1-21, 2024.
Article in English | MEDLINE | ID: mdl-38910874

ABSTRACT

Two new species of Polyporales, Cerrenacaulinicystidiata and Polyporusminutissimus, are illustrated and described on the basis of morphological studies and phylogenetic analyses from southern China and Vietnam. C.caulinicystidiata is characterized by annual, resupinate, sometimes effused-reflexed basidiocarps, greyish orange to brownish orange pore surface, irregular pores (3-8 per mm), a trimitic hyphal system, pyriform to ventricose cystidia, and subglobose basidiospores 3.2-4.5 × 2.8-3.5 µm in size. P.minutissimus is characterized by annual, solitary, fan-shaped with a depressed center or infundibuliform basidiocarps, obvious black stipe, cream to buff yellow pileal surface with glabrous, occasionally zonate and radially aligned stripes, angular pores (6-9 per mm), a dimitic hyphal system, and cylindrical basidiospores, 5-9.2 × 2.2-4 µm. Detailed descriptions and illustrations of the two new species are provided. The differences between the two new species and their morphologically similar and phylogenetically related species are discussed.

13.
Paediatr Drugs ; 26(4): 355-363, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38880837

ABSTRACT

Bacterial infection is one of the major causes of neonatal morbidity and mortality worldwide. Finding rapid and reliable methods for early recognition and diagnosis of bacterial infections and early individualization of antibacterial drug administration are essential to eradicate these infections and prevent serious complications. However, this is often difficult to perform due to non-specific clinical presentations, low accuracy of current diagnostic methods, and limited knowledge of neonatal pharmacokinetics. Although neonatal medicine has been relatively late to embrace the benefits of machine learning (ML), there have been some initial applications of ML for the early prediction of neonatal sepsis and individualization of antibiotics. This article provides a brief introduction to ML and discusses the current state of the art in diagnosing and treating neonatal bacterial infections, gaps, potential uses of ML, and future directions to address the limitations of current studies. Neonatal bacterial infections involve a combination of physiologic development, disease expression, and treatment response outcomes. To address this complex relationship, future models could consider appropriate ML algorithms to capture time series features while integrating influences from the host, microbes, and drugs to optimize antimicrobial drug use in neonates. All models require prospective clinical trials to validate their clinical utility before clinical use.


Subject(s)
Anti-Bacterial Agents , Bacterial Infections , Machine Learning , Humans , Infant, Newborn , Anti-Bacterial Agents/therapeutic use , Bacterial Infections/drug therapy , Bacterial Infections/diagnosis , Clinical Decision-Making , Neonatal Sepsis/drug therapy , Neonatal Sepsis/diagnosis
14.
Drug Resist Updat ; 76: 101114, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38924995

ABSTRACT

Therapy resistance poses a significant obstacle to effective cancer treatment. Recent insights into cell plasticity as a new paradigm for understanding resistance to treatment: as cancer progresses, cancer cells experience phenotypic and molecular alterations, corporately known as cell plasticity. These alterations are caused by microenvironment factors, stochastic genetic and epigenetic changes, and/or selective pressure engendered by treatment, resulting in tumor heterogeneity and therapy resistance. Increasing evidence suggests that cancer cells display remarkable intrinsic plasticity and reversibly adapt to dynamic microenvironment conditions. Dynamic interactions between cell states and with the surrounding microenvironment form a flexible tumor ecosystem, which is able to quickly adapt to external pressure, especially treatment. Here, this review delineates the formation of cancer cell plasticity (CCP) as well as its manipulation of cancer escape from treatment. Furthermore, the intrinsic and extrinsic mechanisms driving CCP that promote the development of therapy resistance is summarized. Novel treatment strategies, e.g., inhibiting or reversing CCP is also proposed. Moreover, the review discusses the multiple lines of ongoing clinical trials globally aimed at ameliorating therapy resistance. Such advances provide directions for the development of new treatment modalities and combination therapies against CCP in the context of therapy resistance.

15.
J Antimicrob Chemother ; 79(7): 1697-1705, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38814793

ABSTRACT

BACKGROUND: Daptomycin is widely used in critically ill patients for Gram-positive bacterial infections. Extracorporeal membrane oxygenation (ECMO) is increasingly used in this population and can potentially alter the pharmacokinetic (PK) behaviour of antibiotics. However, the effect of ECMO has not been evaluated in daptomycin. Our study aims to explore the effect of ECMO on daptomycin in critically ill patients through population pharmacokinetic (PopPK) analysis and to determine optimal dosage regimens based on both efficacy and safety considerations. METHODS: A prospective, open-label PK study was carried out in critically ill patients with or without ECMO. The total concentration of daptomycin was determined by UPLC-MS/MS. NONMEM was used for PopPK analysis and Monte Carlo simulations. RESULTS: Two hundred and ninety-three plasma samples were collected from 36 critically ill patients, 24 of whom received ECMO support. A two-compartment model with first-order elimination can best describe the PK of daptomycin. Creatinine clearance (CLCR) significantly affects the clearance of daptomycin while ECMO has no significant effect on the PK parameters. Monte Carlo simulations showed that, when the MICs for bacteria are  ≥1 mg/L, the currently recommended dosage regimen is insufficient for critically ill patients with CLCR > 30 mL/min. Our simulations suggest 10 mg/kg for patients with CLCR between 30 and 90 mL/min, and 12 mg/kg for patients with CLCR higher than 90 mL/min. CONCLUSIONS: This is the first PopPK model of daptomycin in ECMO patients. Optimal dosage regimens considering efficacy, safety, and pathogens were provided for critical patients based on pharmacokinetic-pharmacodynamic analysis.


Subject(s)
Anti-Bacterial Agents , Critical Illness , Daptomycin , Extracorporeal Membrane Oxygenation , Monte Carlo Method , Humans , Daptomycin/pharmacokinetics , Daptomycin/administration & dosage , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Male , Female , Middle Aged , Prospective Studies , Adult , Aged , Microbial Sensitivity Tests , Tandem Mass Spectrometry , Gram-Positive Bacterial Infections/drug therapy
16.
BMJ Open ; 14(5): e083888, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38821572

ABSTRACT

INTRODUCTION: Prolonged disorders of consciousness (pDoC) are a catastrophic condition following brain injury with few therapeutic options. Transcutaneous auricular vagal nerve stimulation (taVNS), a safe, non-invasive intervention modulating thalamo-cortical connectivity and brain function, is a possible treatment option of pDoC. We developed a protocol for a randomised controlled study to evaluate the effectiveness of taVNS on consciousness recovery in patients with pDoC (TAVREC). METHODS AND ANALYSIS: The TAVREC programme is a multicentre, triple-blind, randomised controlled trial with 4 weeks intervention followed by 4 weeks follow-up period. A minimum number of 116 eligible pDoC patients will be recruited and randomly receive either: (1) conventional therapy plus taVNS (30 s monophasic square current of pulse width 300 µs, frequency of 25 Hz and intensity of 1 mA followed by 30 s rest, 60 min, two times per day, for 4 weeks); or (2) conventional therapy plus taVNS placebo. Primary outcome of TAVREC is the rate of improved consciousness level based on the Coma Recovery Scale-Revised (CRS-R) at week 4. Secondary outcomes are CRS-R total and subscale scores, Glasgow Coma Scale score, Full Outline of UnResponsiveness score, ECG parameters, brainstem auditory evoked potential, upper somatosensory evoked potential, neuroimaging parameters from positron emission tomography/functional MRI, serum biomarkers associated with consciousness level and adverse events. ETHICS AND DISSEMINATION: This study was reviewed and approved by the Research Ethics Committee of the First Affiliated Hospital of Nanjing Medical University (Reference number: 2023-SR-392). Findings will be disseminated in a peer-reviewed journal and presented at relevant conferences. TRIAL REGISTRATION NUMBER: ChiCTR2300073950.


Subject(s)
Consciousness Disorders , Transcutaneous Electric Nerve Stimulation , Vagus Nerve Stimulation , Humans , Vagus Nerve Stimulation/methods , Consciousness Disorders/therapy , Consciousness Disorders/physiopathology , China , Transcutaneous Electric Nerve Stimulation/methods , Consciousness , Randomized Controlled Trials as Topic , Adult , Multicenter Studies as Topic , Recovery of Function , Female , Treatment Outcome , Male
17.
Acta Neuropathol ; 147(1): 79, 2024 05 05.
Article in English | MEDLINE | ID: mdl-38705966

ABSTRACT

Although human females appear be at a higher risk of concussion and suffer worse outcomes than males, underlying mechanisms remain unclear. With increasing recognition that damage to white matter axons is a key pathologic substrate of concussion, we used a clinically relevant swine model of concussion to explore potential sex differences in the extent of axonal pathologies. At 24 h post-injury, female swine displayed a greater number of swollen axonal profiles and more widespread loss of axonal sodium channels than males. Axon degeneration for both sexes appeared to be related to individual axon architecture, reflected by a selective loss of small caliber axons after concussion. However, female brains had a higher percentage of small caliber axons, leading to more extensive axon loss after injury compared to males. Accordingly, sexual dimorphism in axonal size is associated with more extensive axonal pathology in females after concussion, which may contribute to worse outcomes.


Subject(s)
Axons , Brain Concussion , Disease Models, Animal , Sex Characteristics , Animals , Female , Axons/pathology , Brain Concussion/pathology , Male , Swine , Brain/pathology
19.
Medicine (Baltimore) ; 103(20): e38173, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758862

ABSTRACT

Soft tissue sarcoma (STS) incidence, progression, and metastasis are tightly linked to the tumor microenvironment (TME). The modification patterns mediated by pyroptosis-related genes (PRGs) in STS are unknown regarding the immune cell infiltration landscape of TME, immunotherapy effect, and prognostic value. First, we downloaded STS samples from the Cancer Genome Atlas (TCGA) and gene-expression omnibus (GEO) databases. Based on 52 PRGs, 2 pyroptosis modification patterns were analyzed, and the associations of pyroptosis modification patterns with immune cell infiltration in the TME were elucidated systematically. To quantify PRG modification patterns in STS patients, we generated a pyroptosis scoring system using principal component analysis (PCA). We identified 2 distinct pyroptosis modification patterns in STS. Compared to PRG cluster A, the prognosis of cluster B was better. These 2 pyroptosis modification patterns corresponded to different characteristics of immune cell infiltration in the TME and biological behaviors. In the pyroptosis scoring system, a high pyroptosis score was connected to higher immune cell infiltration, stronger immune surveillance, immune-killing effects on tumor cells, and better clinical benefits. The results from 3 anti-PD1/PD-L1-treated immune cohorts demonstrated that higher pyroptosis scores are also closely connected to better immunotherapy results. We demonstrated that pyroptosis modification is essential to the STS microenvironment. Moreover, the pyroptosis score is a reliable and independent prognostic factor in STS patients, enabling a richer understanding of the STS microenvironment and the screening of immunotherapy candidates, predicting the immunotherapeutic effects for individual STS patients, and guiding the use of chemotherapy drugs.


Subject(s)
Immunotherapy , Pyroptosis , Sarcoma , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Pyroptosis/genetics , Sarcoma/genetics , Sarcoma/immunology , Sarcoma/therapy , Immunotherapy/methods , Prognosis , Gene Expression Regulation, Neoplastic
20.
Eur Radiol ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750169

ABSTRACT

OBJECTIVES: To evaluate signal enhancement ratio (SER) for tissue characterization and prognosis stratification in pancreatic adenocarcinoma (PDAC), with quantitative histopathological analysis (QHA) as the reference standard. METHODS: This retrospective study included 277 PDAC patients who underwent multi-phase contrast-enhanced (CE) MRI and whole-slide imaging (WSI) from three centers (2015-2021). SER is defined as (SIlt - SIpre)/(SIea - SIpre), where SIpre, SIea, and SIlt represent the signal intensity of the tumor in pre-contrast, early-, and late post-contrast images, respectively. Deep-learning algorithms were implemented to quantify the stroma, epithelium, and lumen of PDAC on WSIs. Correlation, regression, and Bland-Altman analyses were utilized to investigate the associations between SER and QHA. The prognostic significance of SER on overall survival (OS) was evaluated using Cox regression analysis and Kaplan-Meier curves. RESULTS: The internal dataset comprised 159 patients, which was further divided into training, validation, and internal test datasets (n = 60, 41, and 58, respectively). Sixty-five and 53 patients were included in two external test datasets. Excluding lumen, SER demonstrated significant correlations with stroma (r = 0.29-0.74, all p < 0.001) and epithelium (r = -0.23 to -0.71, all p < 0.001) across a wide post-injection time window (range, 25-300 s). Bland-Altman analysis revealed a small bias between SER and QHA for quantifying stroma/epithelium in individual training, validation (all within ± 2%), and three test datasets (all within ± 4%). Moreover, SER-predicted low stromal proportion was independently associated with worse OS (HR = 1.84 (1.17-2.91), p = 0.009) in training and validation datasets, which remained significant across three combined test datasets (HR = 1.73 (1.25-2.41), p = 0.001). CONCLUSION: SER of multi-phase CE-MRI allows for tissue characterization and prognosis stratification in PDAC. CLINICAL RELEVANCE STATEMENT: The signal enhancement ratio of multi-phase CE-MRI can serve as a novel imaging biomarker for characterizing tissue composition and holds the potential for improving patient stratification and therapy in PDAC. KEY POINTS: Imaging biomarkers are needed to better characterize tumor tissue in pancreatic adenocarcinoma. Signal enhancement ratio (SER)-predicted stromal/epithelial proportion showed good agreement with histopathology measurements across three distinct centers. Signal enhancement ratio (SER)-predicted stromal proportion was demonstrated to be an independent prognostic factor for OS in PDAC.

SELECTION OF CITATIONS
SEARCH DETAIL
...