Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Physiol ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39119683

ABSTRACT

High temperature stress (HTS) affects the growth and production of vegetable crops, including eggplant (Solanum melongena L.). Jasmonic acid (JA) plays key roles in regulating resistance to biotic and abiotic stresses in plants. Nonetheless, reports on the role of JA in heat tolerance in eggplant are rare. Herein, the effects of JA on heat tolerance in eggplant and the functions of the JA biosynthetic genes SmLOX4 and SmLOX5 were analysed. The results showed that the JA content increased under high temperature treatment (HTT) and that exogenous methyl jasmonate (MeJA) treatment reduced the damage caused by HTT to eggplant. The expression of SmLOX4 and SmLOX5 was induced by HTT and was significantly positively correlated with JA biosynthesis. SmLOX4 and SmLOX5 were localized in chloroplasts. The silencing of SmLOX4 and SmLOX5 by virus-induced gene silencing (VIGS) suppressed the heat tolerance of eggplant plants, whereas the overexpression of SmLOX4 and SmLOX5 enhanced the heat tolerance of Arabidopsis thaliana plants. JA content and the expression of JA signalling-related genes decreased in the SmLOX4- and SmLOX5-silenced plants but increased in the OE-SmLOX4 and OE-SmLOX5 transgenic plants. These results revealed that SmLOX4 and SmLOX5 improved eggplant heat tolerance by mediating JA biosynthesis and JA signalling pathways.

2.
Plants (Basel) ; 13(15)2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39124199

ABSTRACT

As important transcription factors, WRKYs play a vital role in the defense response of plants against the invasion of multiple pathogens. Though some WRKY members have been reported to participate in pepper immunity in response to Ralstonia solanacearum infection, the functions of the majority of WRKY members are still unknown. Herein, CaWRKY22b was cloned from the pepper genome and its function against R. solanacearum was analyzed. The transcript abundance of CaWRKY22b was significantly increased in response to the infection of R. solanacearum and the application of exogenous methyl jasmonate (MeJA). Subcellular localization assay in the leaves of Nicotiana benthamiana showed that CaWRKY22b protein was targeted to the nuclei. Agrobacterium-mediated transient expression in pepper leaves indicated that CaWRKY22b overexpression triggered intensive hypersensitive response-like cell death, H2O2 accumulation, and the up-regulation of defense- and JA-responsive genes, including CaHIR1, CaPO2, CaBPR1, and CaDEF1. Virus-induced gene silencing assay revealed that knock-down of CaWRKY22b attenuated pepper's resistance against R. solanacearum and the up-regulation of the tested defense- and jasmonic acid (JA)-responsive genes. We further assessed the role of CaWRKY22b in modulating the expression of JA-responsive CaDEF1, and the result demonstrated that CaWRKY22b trans-activated CaDEF1 expression by directly binding to its upstream promoter. Collectively, our results suggest that CaWRKY22b positively regulated pepper immunity against R. solanacearum in a manner associated with JA signaling, probably by modulating the expression of JA-responsive CaDEF1.

3.
J Agric Food Chem ; 72(28): 15586-15600, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38949485

ABSTRACT

Multiprotein bridging factor 1 (MBF1) is a very important transcription factor (TF) in plants, whose members influence numerous defense responses. Our study found that MBF1c in Cucurbitaceae was highly conserved. CsMBF1c expression was induced by temperature, salt stress, and abscisic acid (ABA) in cucumber. Overexpressed CsMBF1c enhanced the heat resistance of a cucumber, and the Csmbf1c mutant showed decreased resistance to high temperatures (HTs). CsMBF1c played an important role in stabilizing the photosynthetic system of cucumber under HT, and its expression was significantly associated with heat-related TFs and genes related to protein processing in the endoplasmic reticulum (ER). Protein interaction showed that CsMBF1c interacted with dehydration-responsive element binding protein 2 (CsDREB2) and nuclear factor Y A1 (CsNFYA1). Overexpression of CsNFYA1 in Arabidopsis improved the heat resistance. Transcriptional activation of CsNFYA1 was elevated by CsMBF1c. Therefore, CsMBF1c plays an important regulatory role in cucumber's resistance to high temperatures.


Subject(s)
Cucumis sativus , Gene Expression Regulation, Plant , Plant Proteins , Thermotolerance , Transcription Factors , Cucumis sativus/genetics , Cucumis sativus/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Thermotolerance/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Hot Temperature , Arabidopsis/genetics , Arabidopsis/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
4.
Plants (Basel) ; 13(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38999615

ABSTRACT

As an important member of mitogen-activated protein kinase (MAPK) cascades, MAPKs play an important role in plant defense response against biotic and abiotic stresses; however, the involvement of the majority of the MAPK family members against Ralstonia solanacearum and heat stress (HS) remains poorly understood. In the present study, CaMAPK1 was identified from the genome of pepper and its function against R. solanacearum and HS was analyzed. The transcript accumulations of CaMAPK1 and the activities of its native promoter were both significantly induced by R. solanacearum inoculation, HS, and the application of exogenous hormones, including SA, MeJA, and ABA. Transient expression of CaMAPK1 showed that CaMAPK1 can be targeted throughout the whole cells in Nicotiana benthamiana and triggered chlorosis and hypersensitive response-like cell death in pepper leaves, accompanied by the accumulation of H2O2, and the up-regulations of hormones- and H2O2-associated marker genes. The knock-down of CaMAPK1 enhanced the susceptibility to R. solanacearum partially by down-regulating the expression of hormones- and H2O2-related genes and impairing the thermotolerance of pepper probably by attenuating CaHSFA2 and CaHSP70-1 transcripts. Taken together, our results revealed that CaMAPK1 is regulated by SA, JA, and ABA signaling and coordinates responses to R. solanacearum infection and HS in pepper.

5.
Physiol Plant ; 176(1): e14215, 2024.
Article in English | MEDLINE | ID: mdl-38366670

ABSTRACT

High temperature affects the growth and production of cucumber. Selecting thermotolerant cucumber cultivars is conducive to coping with high temperatures and improving production. Thus, a quick and effective method for screening thermotolerant cucumber cultivars is needed. In this study, four cucumber cultivars were used to identify heat resistance indexes. The morphological, physiological and biochemical indexes were measured. When exposed to high temperatures, thermotolerant cucumber had a more stable photosystem, membrane, and oxidation-reduction systems. The impact of high temperatures on plants is multifaceted, and the accurate discrimination of heat resistance cannot be achieved solely based on a single or multiple indicators. Therefore, principal component analysis (PCA) was employed to comprehensively evaluate the heat resistance of cucumber plants. The results showed that the heat resistance obtained by PCA was significantly correlated with the heat injury index. In addition, the stepwise regression equation identified two heat-related indices, hydrogen peroxide content (H2 O2 ) and photosynthetic operating efficiency (Fq'/Fm'), and they can quickly distinguish the heat resistance of the other 8 cucumber cultivars. These results will help to accelerate the selection of thermotolerant resources and assist in cucumber breeding.


Subject(s)
Cucumis sativus , Cucumis sativus/physiology , Photosynthesis/physiology
6.
Hortic Res ; 11(1): uhad246, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38239808

ABSTRACT

Bacterial wilt caused by Ralstonia solanacearum is a severe soil-borne disease globally, limiting the production in Solanaceae plants. SmNAC negatively regulated eggplant resistance to Bacterial wilt (BW) though restraining salicylic acid (SA) biosynthesis. However, other mechanisms through which SmNAC regulates BW resistance remain unknown. Here, we identified an interaction factor, SmDDA1b, encoding a substrate receptor for E3 ubiquitin ligase, from the eggplant cDNA library using SmNAC as bait. SmDDA1b expression was promoted by R. solanacearum inoculation and exogenous SA treatment. The virus-induced gene silencing of the SmDDA1b suppressed the BW resistance of eggplants; SmDDA1b overexpression enhanced the BW resistance of tomato plants. SmDDA1b positively regulates BW resistance by inhibiting the spread of R. solanacearum within plants. The SA content and the SA biosynthesis gene ICS1 and signaling pathway genes decreased in the SmDDA1b-silenced plants but increased in SmDDA1b-overexpression plants. Moreover, SmDDB1 protein showed interaction with SmCUL4 and SmDDA1b and protein degradation experiments indicated that SmDDA1b reduced SmNAC protein levels through proteasome degradation. Furthermore, SmNAC could directly bind the SmDDA1b promoter and repress its transcription. Thus, SmDDA1b is a novel regulator functioning in BW resistance of solanaceous crops via the SmNAC-mediated SA pathway. Those results also revealed a negative feedback loop between SmDDA1b and SmNAC controlling BW resistance.

7.
Front Plant Sci ; 14: 1310080, 2023.
Article in English | MEDLINE | ID: mdl-38197083

ABSTRACT

Eggplant (Solanum melongena) is an economically important crop and rich in various nutrients, among which rutin that has positive effects on human health is found in eggplant. Glycosylation mediated by UDP-glycosyltransferases (UGTs) is a key step in rutin biosynthesis. However, the UGT gene has not been reported in eggplant to date. Herein, 195 putative UGT genes were identified in eggplant by genome-wide analysis, and they were divided into 17 subgroups (Group A-P and Group R) according to the phylogenetic evolutionary tree. The members of Groups A, B, D, E and L were related to flavonol biosynthesis, and rutin was the typical flavonol. The expression profile showed that the transcriptional levels of SmUGT genes in Clusters 7-10 were closely related to those of rutin biosynthetic pathway genes. Notably, SmUGT89B2 was classified into Cluster 7 and Group B; its expression was consistent with rutin accumulation in different tissues and different leaf stages of eggplant. SmUGT89B2 was located in the nucleus and cell membrane. Virus-induced gene silencing (VIGS) and transient overexpression assays showed that SmUGT89B2 can promote rutin accumulation in eggplant. These findings provide new insights into the UGT genes in eggplant, indicating that SmUGT89B2 is likely to encode the final enzyme in rutin biosynthesis.

SELECTION OF CITATIONS
SEARCH DETAIL