Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 198
Filter
1.
Antimicrob Agents Chemother ; : e0064224, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39082882

ABSTRACT

Praziquantel (PZQ) is currently the only approved drug for treating clonorchiasis, but its poor efficacy against Clonorchis sinensis larvae has highlighted the need to develop newer drugs. In this study, to address this challenge, we investigated the anti-parasitic efficacy of miltefosine (MLT), curcumin (CUR), and PZQ against C. sinensis metacercariae (CsMC), newly excysted juvenile worms (CsNEJs), and adults. Larvicidal effects of MLT and CUR surpassed those elicited by PZQ in vitro. These two drugs exerted their effect against both CsMC and CsNEJs in a dose- and time-dependent manner. To confirm the effect of these drugs in vivo, Syrian golden hamsters were orally infected with 100 CsMC and subsequently treated with MLT, CUR, or PZQ at 1 and 4 weeks post-infection (wpi). MLT and CUR reduced the worm recoveries at 1 and 4 wpi, indicating that these drugs were efficacious against both larvae and adult C. sinensis. PZQ was only efficacious against adult worms. Interestingly, both MLT and CUR showed lower levels of C. sinensis-specific IgG responses than the infection control group, implying that worm burden and bile IgG responses could be correlated. These results indicate that MLT and CUR are efficacious against both larval and adult stages of C. sinensis, thereby highlighting their potential for further development as alternative therapeutic options for clonorchiasis.

2.
Vaccines (Basel) ; 12(7)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39066431

ABSTRACT

Cutaneous leishmaniasis (CL) is a tropical disease endemic in many parts of the world. Characteristic clinical manifestations of CL include the formation of ulcerative skin lesions that can inflict life-long disability if left untreated. Although drugs are available, they are unaffordable and out of reach for individuals who need them the most. Developing a highly cost-efficient CL vaccine could address this problem but such a vaccine remains unavailable. Here, we developed a chimeric influenza virus-like particle expressing the Leishmania amazonensis promastigote surface antigen (LaPSA-VLP). LaPSA-VLPs were self-assembled in Spodoptera frugiperda insect cell lines using the baculovirus expression system. After characterizing the vaccines and confirming successful VLP assembly, BALB/c mice were immunized with these vaccines for efficacy assessment. Sera acquired from mice upon subcutaneous immunization with the LaPSA-VLP specifically interacted with the L. amazonensis soluble total antigens. LaPSA-VLP-immunized mice elicited significantly greater quantities of parasite-specific IgG from the spleens, popliteal lymph nodes, and footpads than unimmunized mice. LaPSA-VLP immunization also enhanced the proliferation of B cell populations in the spleens of mice and significantly lessened the CL symptoms, notably the footpad swelling and IFN-γ-mediated inflammatory response. Overall, immunizing mice with the LaPSA-VLPs prevented mice from developing severe CL symptoms, signifying their developmental potential.

3.
PLoS Negl Trop Dis ; 18(6): e0012229, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38857253

ABSTRACT

Leishmania donovani surface glycoprotein 63 (GP63) is a major virulence factor involved in parasite escape and immune evasion. In this study, we generated virus-like particles (VLPs) expressing L. donovani GP63 using the baculovirus expression system. Mice were intramuscularly immunized with GP63-VLPs and challenged with L. donovani promastigotes. GP63-VLP immunization elicited higher levels of L. donovani antigen-specific serum antibodies and enhanced splenic B cell, germinal center B cell, CD4+, and CD8+ T cell responses compared to unimmunized controls. GP63-VLPs inhibited the influx of pro-inflammatory cytokines IFN-γ and IL-6 in the livers, as well as thwarting the development of splenomegaly in immunized mice. Upon L. donovani challenge infection, a drastic reduction in splenic parasite burden was observed in VLP-immunized mice. These results indicate that GP63-VLPs immunization conferred protection against L. donovani challenge infection by inducing humoral and cellular immunity in mice.


Subject(s)
Leishmania donovani , Leishmaniasis, Visceral , Mice, Inbred BALB C , Vaccines, Virus-Like Particle , Animals , Leishmania donovani/immunology , Mice , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/administration & dosage , Female , Leishmaniasis, Visceral/prevention & control , Leishmaniasis, Visceral/immunology , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Leishmaniasis Vaccines/immunology , Leishmaniasis Vaccines/administration & dosage , Vaccine Efficacy , Immunity, Cellular , Spleen/immunology , CD8-Positive T-Lymphocytes/immunology , B-Lymphocytes/immunology , Immunity, Humoral , Membrane Glycoproteins/immunology , Membrane Glycoproteins/genetics , Cytokines/immunology , Metalloendopeptidases
4.
Parasites Hosts Dis ; 62(2): 193-204, 2024 May.
Article in English | MEDLINE | ID: mdl-38835260

ABSTRACT

Malaria is a global disease affecting a large portion of the world's population. Although vaccines have recently become available, their efficacies are suboptimal. We generated virus-like particles (VLPs) that expressed either apical membrane antigen 1 (AMA1) or microneme-associated antigen (MIC) of Plasmodium berghei and compared their efficacy in BALB/c mice. We found that immune sera acquired from AMA1 VLP- or MIC VLP-immunized mice specifically interacted with the antigen of choice and the whole P. berghei lysate antigen, indicating that the antibodies were highly parasite-specific. Both VLP vaccines significantly enhanced germinal center B cell frequencies in the inguinal lymph nodes of mice compared with the control, but only the mice that received MIC VLPs showed significantly enhanced CD4+ T cell responses in the blood following P. berghei challenge infection. AMA1 and MIC VLPs significantly suppressed TNF-α and interleukin-10 production but had a negligible effect on interferon-γ. Both VLPs prevented excessive parasitemia buildup in immunized mice, although parasite burden reduction induced by MIC VLPs was slightly more effective than that induced by AMA1. Both VLPs were equally effective at preventing body weight loss. Our findings demonstrated that the MIC VLP was an effective inducer of protection against murine experimental malaria and should be the focus of further development.


Subject(s)
Antigens, Protozoan , Malaria Vaccines , Membrane Proteins , Plasmodium berghei , Protozoan Proteins , Vaccines, Virus-Like Particle , Animals , Female , Mice , Antibodies, Protozoan/immunology , Antibodies, Protozoan/blood , Antigens, Protozoan/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , Malaria/prevention & control , Malaria/immunology , Malaria Vaccines/immunology , Malaria Vaccines/administration & dosage , Membrane Proteins/immunology , Mice, Inbred BALB C , Parasitemia/immunology , Parasitemia/prevention & control , Plasmodium berghei/immunology , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/administration & dosage
5.
PLoS One ; 19(3): e0301214, 2024.
Article in English | MEDLINE | ID: mdl-38512946

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0161231.].

6.
Nanomedicine (Lond) ; 19(9): 741-754, 2024 04.
Article in English | MEDLINE | ID: mdl-38390688

ABSTRACT

Aims: To develop an effective universal vaccine against antigenically different influenza viruses. Materials & methods: We generated influenza virus-like particles (VLPs) expressing the H1 and H3 antigens with or without M2e5x. VLP-induced immune responses and crossprotection against H1N1, H3N2 or H5N1 viruses were assessed to evaluate their protective efficacy. Results: H1H3M2e5x immunization elicited higher crossreactive IgG antibodies than H1H3 VLPs. Upon challenge, both VLPs enhanced lung IgG, IgA and germinal center B-cell responses compared with control. While these VLPs conferred protection, H1H3M2e5x showed greater lung viral load reduction than H1H3 VLPs with minimal body weight loss. Conclusion: Utilizing VLPs containing dual-hemagglutinin, along with M2e5x, can be a vaccination strategy for inducing crossprotection against influenza A viruses.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H5N1 Subtype , Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Humans , Animals , Mice , Influenza, Human/prevention & control , Hemagglutinins , Influenza A Virus, H3N2 Subtype , Influenza Vaccines/therapeutic use , Immunoglobulin G , Orthomyxoviridae Infections/prevention & control , Mice, Inbred BALB C
7.
Respir Res ; 25(1): 7, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38178222

ABSTRACT

Excessive pulmonary inflammation is the hallmark of respiratory syncytial virus (RSV) infection hindering efficacious RSV vaccine development. Yet, the vast majority of the experimental RSV vaccine studies use laboratory-adapted RSV strains that do not reflect the highly pathogenic and inflammatory nature of the virus found in clinical settings. Here, we re-evaluated the protective efficacy of the virus-like particle (VLP) vaccine co-expressing the pre-fusion (pre-F) protein and G protein with tandem repeats (Gt) reported in our previous study against the recombinant RSV rA2-line19F strain, which inflicts severe mucus production and inflammation in mice. VLP vaccine immunization elicited virus-specific serum antibody responses that mediated RSV rA2-line19F virus neutralization. VLP vaccine immunization promoted Th1 immune response development in the spleens and CD8 + T cell influx into the lungs of mice, which are essential for efficient viral clearance and dampened inflammatory response. When compared to the VLPs expressing only the pre-F antigen, those co-expressing both pre-F and Gt antigens conferred better protection in mice against rA2-line19F challenge infection. Overall, our data suggest that the pre-clinical VLP vaccine co-expressing RSV pre-F and Gt antigens can effectively protect mice against RSV strains that resemble pathogenic clinical isolates.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Animals , Mice , Antibodies, Viral , Lung/pathology , Respiratory Syncytial Virus Vaccines/genetics , GTP-Binding Proteins , Mice, Inbred BALB C , Antibodies, Neutralizing
8.
Parasites Hosts Dis ; 61(4): 397-404, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38043535

ABSTRACT

Acanthamoeba species are free-living amoebae those are widely distributed in the environment. They feed on various microorganisms, including bacteria, fungi, and algae. Although majority of the microbes phagocytosed by Acanthamoeba spp. are digested, some pathogenic bacteria thrive within them. Here, we identified the roles of 3 phagocytosis-associated genes (ACA1_077100, ACA1_175060, and AFD36229.1) in A. castellanii. These 3 genes were upregulated after the ingestion of Escherichia coli. However, after the ingestion of Legionella pneumophila, the expression of these 3 genes was not altered after the consumption of L. pneumophila. Furthermore, A. castellanii transfected with small interfering RNS (siRNA) targeting the 3 phagocytosis-associated genes failed to digest phagocytized E. coli. Silencing of ACA1_077100 disabled phagosome formation in the E. coli-ingesting A. castellanii. Alternatively, silencing of ACA1_175060 enabled phagosome formation; however, phagolysosome formation was inhibited. Moreover, suppression of AFD36229.1 expression prevented E. coli digestion and consequently led to the rupturing of A. castellanii. Our results demonstrated that the ACA1_077100, ACA1_175060, and AFD36229.1 genes of Acanthamoeba played crucial roles not only in the formation of phagosome and phagolysosome but also in the digestion of E. coli.


Subject(s)
Acanthamoeba castellanii , Legionella pneumophila , Acanthamoeba castellanii/genetics , Escherichia coli/genetics , Phagocytosis/genetics , Phagosomes
9.
Parasites Hosts Dis ; 61(4): 418-427, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38043537

ABSTRACT

Toxoplasma gondii infections are primarily diagnosed by serological assays, whereas molecular and fluorescence-based techniques are garnering attention for their high sensitivity in detecting these infections. Nevertheless, each detection method has its limitations. The toxoplasmosis detection capabilities of most of the currently available methods have not been evaluated under identical experimental conditions. This study aimed to assess the diagnostic potential of enzyme-linked immunosorbent assay (ELISA), real-time polymerase chain reaction (RT-PCR), immunohistochemistry (IHC), and immunofluorescence (IF) in BALB/c mice experimentally infected with various doses of T. gondii ME49. The detection of toxoplasmosis from sera and brain tissues was markedly enhanced in mice subjected to high infection doses (200 and 300 cysts) compared to those subjected to lower doses (10 and 50 cysts) for all the detection methods. Additionally, increased B1 gene expression levels and cyst sizes were observed in the brain tissues of the mice. Importantly, IHC, IF, and ELISA, but not RT-PCR, successfully detected T. gondii infections at the lowest infection dose (10 cysts) in the brain. These findings may prove beneficial while designing experimental methodologies for detecting T. gondii infections in mice.


Subject(s)
Toxoplasma , Toxoplasmosis , Animals , Mice , Toxoplasma/genetics , Mice, Inbred BALB C , Toxoplasmosis/diagnosis , Enzyme-Linked Immunosorbent Assay , Brain
10.
ACS Infect Dis ; 9(12): 2583-2592, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38014824

ABSTRACT

To date, Leishmania spp. vaccine studies have mainly focused on cellular immunity induction, which plays a crucial role in host protection. In contrast, vaccine-induced humoral immunity is largely neglected. Virus-like particle (VLP) vaccines generated using the baculovirus expression system are well-known inducers of humoral immunity and would serve as a suitable platform for evaluating humoral immunity-mediated protection against visceral Leishmaniasis. In this study, we investigated the humoral immunity evoked through VLPs expressing the L. donovani promastigote surface antigen (PSA-VLPs) and assessed their contribution to protection in mice. PSA-VLPs vaccines were generated using the baculovirus expression system and used for mouse immunizations. Mice were intramuscularly immunized twice with PSA-VLPs and challenged with L. donovani to confirm vaccine-induced protective immunity. PSA-VLP immunization elicited parasite-specific antibody responses in the sera of mice, which were induced in a dose-dependent manner. B cell, germinal center B cell, and memory B cell responses in the spleen were found to be higher in vaccinated mice compared to unimmunized controls. PSA-VLP immunization diminished the production of pro-inflammatory cytokines IFN-γ and IL-6 in the liver. Overall, the PSA-VLPs conferred protection against L. donovani challenge infection by reducing the total parasite burden within the internal organs. These results suggest that PSA-VLPs induced protective immunity against the L. donovani challenge infection.


Subject(s)
Leishmania donovani , Leishmaniasis Vaccines , Vaccines, Virus-Like Particle , Humans , Male , Animals , Mice , Immunity, Humoral , Prostate-Specific Antigen , Antigens, Protozoan/genetics , Antigens, Surface
11.
Article in English | MEDLINE | ID: mdl-37903218

ABSTRACT

Lessons from the recent COVID-19 pandemic underscore the importance of rapidly developing an efficacious vaccine and its immediate administration for prophylaxis. Oral vaccines are of particular interest, as the presence of healthcare professionals is not needed for this stress-free vaccination approach. In this study, we designed a chitosan (CH)-alginate (AL) complex carrier system encapsulating an inactivated influenza virus vaccine (A/PR/8/34, H1N1), and the efficacy of these orally administered nanocomposite vaccines was evaluated in mice. Interestingly, CH-AL complexes were able to load large doses of vaccine (≥90%) with a stable dispersion. The encapsulated vaccine was protected from gastric acid and successfully released from the nanocomposite upon exposure to conditions resembling those of the small intestines. Scanning electron microscopy of the CH-virus-AL complexes revealed that the connections between the lumps became loose and widened pores were visible on the nanocomposite's surface at pH 7.4, thereby increasing the chance of virus release into the surroundings. Orally inoculating CH-virus-AL into mice elicited higher virus-specific IgG compared to the unimmunized controls. CH-virus-AL immunization also enhanced CD4 and CD8 T cell responses while diminishing lung virus titer, inflammatory cytokine production, and body weight loss compared to the infection control group. These results suggest that chitosan-alginate polymeric nanocomposites could be promising delivery complexes for oral influenza vaccines.

12.
Infect Drug Resist ; 16: 6099-6110, 2023.
Article in English | MEDLINE | ID: mdl-37719656

ABSTRACT

Purpose: Heterologous virus-like particle (VLP) assembly involving influenza or the Newcastle disease virus matrix protein (M) has been extensively used to explore the efficacies of VLP vaccines against the respiratory syncytial virus (RSV). Here, we attempted to generate homologous RSV VLPs by expressing the pre-fusion (pre-F) or the glycoprotein (G) on the RSV M protein and evaluated their protective efficacy in mice. Methods: We generated VLPs using the baculovirus expression system in Spodoptera frugiperda (Sf9) insect cells. Recombinant baculoviruses expressing the RSV pre-F, G, and M antigens were inoculated into Sf9 cells, and particles were self-assembled. Mice were immunized with either pre-F or G-expressing VLPs, and immune parameters were assessed to determine protection. Results: Our findings show that successful VLP assembly can be achieved by utilizing recombinant baculoviruses expressing the RSV pre-F or G proteins with the native matrix protein. Mice immunized with either pre-F or the G antigen-expressing VLPs elicited robust serum-mediated virus neutralization. VLP immunization evoked Th1-biased RSV-specific antibody responses in the sera of mice. Following challenge infection with the RSV A2 strain, immunized mice experienced lesser eosinophil and IL-4 accumulation in the lungs, though a substantial increase in TNF-α secretion was observed from CD4+ T cells. Interestingly, splenic antibody-secreting cell responses were substantially enhanced against RSV F antigen, but not against the RSV G antigen following immunization and challenge infection. Immunizing mice with the VLPs significantly inhibited pulmonary histopathology development, as indicated by the diminished inflammatory immune cell influx and mucin secretion. Conclusion: Combined, these vaccine-induced immune responses contributed to successfully inhibiting the RSV replication in the lungs of mice and demonstrated that RSV VLP assembly using insect cell-derived homologous RSV matrix protein is a feasible approach.

13.
Trop Med Infect Dis ; 8(8)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37624318

ABSTRACT

The cell-traversal protein for ookinetes and sporozoites (CelTOS), expressed on the surface of ookinetes and sporozoitesin Plasmodium species, is a promising malaria vaccine candidate. CelTOS is essential for parasite invasion into mosquito midgut and human hepatocytes, thereby contributing to malaria transmission and disease pathogenesis. This study explores the genetic diversity, polymorphisms, haplotypes, natural selection, phylogenetic analysis, and epitope prediction in the full-length Plasmodium knowlesi CelTOS gene in clinical samples from Sarawak, Malaysian Borneo, and long-term laboratory strains from Peninsular Malaysia and the Philippines. Our analysis revealed a high level of genetic variation in the PkCelTOS gene, with a nucleotide diversity of π ~ 0.021, which was skewed towards the 3' end of the gene. This level of diversity is double that observed in PfCelTOS and 20 times that observed in PvCelTOS from worldwide clinical samples. Tests of natural selection revealed evidence for positive selection within clinical samples. Phylogenetic analysis of the amino acid sequence of PkCelTOS revealed the presence of two distinct groups, although no geographical clustering was observed. Epitope prediction analysis identified two potential epitopes (96AQLKATA102 and 124TIKPPRIKED133) using the IEDB server and one epitope (125IKPPRIKED133) by Bcepred server on the C' terminal region of PkCelTOS protein. Both the servers predicted a common epitope region of nine amino acid length (IKPPRIKED) peptide, which can be studied in the future as a potential candidate for vaccine development. These findings shed light on the genetic diversity, polymorphism, haplotypes, and natural selection within PkCelTOS in clinical samples and provide insights about its future prospects as a potential candidate for P. knowlesi malaria vaccine development.

14.
Parasites Hosts Dis ; 61(3): 231-239, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37648228

ABSTRACT

Toxoplasma gondii is an intracellular parasitic organism affecting all warm-blooded vertebrates. Due to the unavailability of commercialized human T. gondii vaccine, many studies have been reported investigating the protective efficacy of pre-clinical T. gondii vaccines expressing diverse antigens. Careful antigen selection and implementing multifarious immunization strategies could enhance protection against toxoplasmosis in animal models. Although none of the available vaccines could remove the tissue-dwelling parasites from the host organism, findings from these pre-clinical toxoplasmosis vaccine studies highlighted their developmental potential and provided insights into rational vaccine design. We herein explored the progress of T. gondii vaccine development using DNA, protein subunit, and virus-like particle vaccine platforms. Specifically, we summarized the findings from the pre-clinical toxoplasmosis vaccine studies involving T. gondii challenge infection in mice published in the past 5 years.


Subject(s)
Toxoplasma , Toxoplasmosis , Humans , Animals , Mice , Ethnicity , Immunization , Vaccine Development , Toxoplasmosis/prevention & control
15.
Parasit Vectors ; 16(1): 215, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37380986

ABSTRACT

BACKGROUND: Legionella spp. can survive and replicate inside host cells such as protozoa and macrophages. After enough growth, Legionella is released from the host cells as free legionellae or Legionella-filled vesicles. The vesicles support Legionella to survive for a long time in the environment and transmit to a new host. In this study, we identified the differentially expressed genes of Acanthamoeba infected by Legionella (ACA1_114460, ACA1_091500, and ACA1_362260) and examined their roles in the formation of the excreted vesicles and escape of Legionella from the Acanthamoeba. METHODS: After ingestion of Escherichia coli and Legionella pneumophila, expression levels of target genes in Acanthamoeba were measured by real-time polymerase chain reaction (PCR) analysis. The roles of target genes were investigated by transfection of small interfering RNA (siRNA). The formation of Legionella-containing excreted vesicles and the vesicular co-localization with the lysosomes were examined by Giemsa stain and LysoTracker stain. RESULTS: ACA1_114460, ACA1_091500, and ACA1_362260 were upregulated after ingestion of Legionella in Acanthamoeba. ACA1_114460- and ACA1_091500-silenced Acanthamoeba failed to form the Legionella-containing excreted vesicles. Legionella was released as free legionellae from the Acanthamoeba. When the ACA1_362260 of Acanthamoeba was silenced, Legionella-containing excreted vesicles were fused with the lysosome. CONCLUSIONS: These results indicated that ACA1_114460, ACA1_091500, and ACA1_362260 of Acanthamoeba played important roles in the formation of Legionella-containing excreted vesicles and inhibition of the lysosomal co-localization with the phagosome.


Subject(s)
Acanthamoeba castellanii , Legionella pneumophila , Legionella pneumophila/genetics , Acanthamoeba castellanii/genetics , Azure Stains , Coloring Agents , Endocytosis , Escherichia coli , RNA, Small Interfering
16.
Pathogens ; 12(4)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37111412

ABSTRACT

Acanthamoeba spp. is the causative agent of Acanthamoeba keratitis (AK), a vision-threatening parasitic disease whose primary risk factor has been attributed to poor contact lens hygiene. Unfortunately, differential diagnosis of AK is challenging as the clinical manifestations for AK are similar to those of bacterial, fungal, or even viral keratitis. Since delayed AK diagnosis can incur permanent vision impairment, a rapid and sensitive diagnostic method is urgently needed. Here, the diagnostic potential of polyclonal antibodies targeting the chorismate mutase (CM) of Acanthamoeba spp. was evaluated in AK animal models. CM antibody specificity against Acanthamoeba trophozoites and cysts was confirmed by immunocytochemistry after co-culturing Acanthamoeba with Fusarium solani, Pseudomonas aeruginosa, and Staphylococcus aureus, and human corneal epithelial (HCE) cells. Enzyme-linked immunosorbent assay (ELISA) was performed using CM-specific immune sera raised in rabbits, which demonstrated that the antibodies specifically interacted with the Acanthamoeba trophozoites and cysts in a dose-dependent manner. To evaluate the diagnostic potential of the CM antibody, AK animal models were established by incubating contact lenses with an inoculum containing A. castellanii trophozoites and subsequently overlaying these lenses onto the corneas of BALB/c mice for 7 and 21 days. The CM antibody specifically detected Acanthamoeba antigens in the murine lacrimal and eyeball tissue lysates at both time points. Our findings underscore the importance of antibody-based AK diagnosis, which could enable early and differential AK diagnosis in clinical settings.

17.
PLoS One ; 18(4): e0283928, 2023.
Article in English | MEDLINE | ID: mdl-37104285

ABSTRACT

Toxoplasma gondii host cellular invasion factors such as the rhoptry proteins, micronemal antigens, or other subcellular compartment proteins have shown limited vaccine efficacies. T. gondii cyst wall protein (CST1) as a cyst persistence factor is critical for cyst wall integrity and bradyzoite persistence. Here, we generated influenza virus-like particles (VLPs) expressing the T. gondii CST1 and evaluated the mucosal as well as systemic immunities induced by VLPs. Intranasal immunization with the VLPs induced parasite-specific IgG and IgA antibody responses in sera and intestines. VLP immunization showed higher levels of germinal center B cell response and antibody-secreting cell (ASC) response upon challenge infection, indicating memory B cell response was induced. VLP-immunized mice showed a significant reduction of cyst counts and lower levels of pro-inflammatory cytokines (IFN-γ, IL-6) production in the brain upon T. gondii ME49 challenge infection compared to unimmunized control. Thus, VLP immunization protected mice from the lethal dose challenge infection with T. gondii ME49 and did not incur bodyweight loss. These results indicated that T. gondii CST1 containing VLPs can induce mucosal and systemic immunity and also suggest its developmental potential as an effective vaccine candidate against T. gondii infection.


Subject(s)
Protozoan Vaccines , Toxoplasma , Vaccines, Virus-Like Particle , Animals , Mice , Protozoan Proteins , Vaccination , Cytokines , Antibodies, Protozoan , Mice, Inbred BALB C , Immunity, Mucosal
18.
Pharmaceutics ; 15(3)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36986643

ABSTRACT

Respiratory syncytial virus (RSV) causes severe lower respiratory tract disease in children and the elderly. However, there are no effective antiviral drugs or licensed vaccines available for RSV infection. Here, RSV virus-like particle (VLP) vaccines expressing Pre-F, G, or Pre-F and G proteins on the surface of influenza virus matrix protein 1 (M1) were produced using the baculovirus expression system, and their protective efficacy was evaluated in mice. The morphology and successful assembly of VLPs were confirmed by transmission electron microscope (TEM) and Western blot. High levels of serum IgG antibody response were detected in VLP-immunized mice, and significantly higher levels of IgG2a and IgG2b were found in the Pre-F+G VLP immunization group compared to the unimmunized control. Serum-neutralizing activity was higher in the VLP immunization groups compared to the naïve group, with Pre-F+G VLPs demonstrating superior neutralizing activity to the single antigen-expressing VLP groups. Pulmonary IgA and IgG responses were generally comparable across the immunization groups, with VLPs expressing the Pre-F antigen eliciting higher IFN-γ in spleens. The frequencies of eosinophils and IL-4-producing CD4+ T cell populations were substantially lower in the lungs of VLP-immunized mice, with the PreF+G vaccine inducing a significant increase in CD4+ and CD8+ T cells. VLP immunization significantly decreased the viral titer and inflammation in the lungs of mice, with Pre-F+G VLPs conferring the best protection. In conclusion, our present study suggests that the Pre-F+G VLPs could be a potential vaccine candidate against RSV infection.

19.
Viruses ; 15(2)2023 01 30.
Article in English | MEDLINE | ID: mdl-36851606

ABSTRACT

With technological advancements enabling globalization, the intercontinental transmission of pathogens has become much easier. Respiratory viruses are one such group of pathogens that require constant monitoring since their outbreak leads to massive public health crises, as exemplified by the influenza virus, respiratory syncytial virus (RSV), and the recent coronavirus disease 2019 (COVID-19) outbreak caused by the SARS-CoV-2. To prevent the transmission of these highly contagious viruses, developing prophylactic tools, such as vaccines, is of considerable interest to the scientific community. Virus-like particles (VLPs) are highly sought after as vaccine platforms for their safety and immunogenicity profiles. Although several VLP-based vaccines against hepatitis B and human papillomavirus have been approved for clinical use by the United States Food and Drug Administration, VLP vaccines against the three aforementioned respiratory viruses are lacking. Here, we summarize the most recent progress in pre-clinical and clinical VLP vaccine development. We also outline various strategies that contributed to improving the efficacy of vaccines against each virus and briefly discuss the stability aspect of VLPs that makes it a highly desired vaccine platform.


Subject(s)
COVID-19 , Hepatitis B , Respiratory Syncytial Virus, Human , Vaccines, Virus-Like Particle , United States , Humans , COVID-19/prevention & control , SARS-CoV-2
20.
Vet Med Sci ; 9(1): 326-335, 2023 01.
Article in English | MEDLINE | ID: mdl-36446749

ABSTRACT

BACKGROUND: T-box transcription factor 2 (TBX2) is a member of T-box gene family whose members are highly conserved in evolution and encoding genes and are involved in the regulation of developmental processes. The encoding genes play an important role in growth and development. Although TBX2 has been widely studied in cancer cell growth and development, its biological functions in bovine cumulus cells remain unclear. OBJECTIVES: This study aimed to investigate the regulatory effects of TBX2 in bovine cumulus cells. METHODS: TBX2 gene was knockdown with siRNA to clarify the function in cellular physiological processes. Cell proliferation and cycle changes were determined by xCELLigence cell function analyzer and flow cytometry. Mitochondrial membrane potential and autophagy were detected by fluorescent dye staining and immunofluorescence techniques. Western blot and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) were used to detect the expression changes of proliferation and autophagy-related proteins. Aadenosine triphosphate (ATP) production, glucose metabolism, and cholesterol synthesis of cumulus cells were measured by optical density and chemiluminescence analysis. RESULTS: After inhibition of TBX2, the cell cycle was disrupted. The levels of apoptosis, ratio of light chain 3 beta II/I, and reactive oxygen species were increased. The proliferation, expansion ability, ATP production, and the amount of cholesterol secreted by cumulus cells were significantly decreased. CONCLUSIONS: TBX2 plays important roles in regulating the cells' proliferation, expansion, apoptosis, and autophagy; maintaining the mitochondrial function and cholesterol generation of bovine cumulus cells.


Subject(s)
Autophagy , Cumulus Cells , Female , Animals , Cattle , Cumulus Cells/metabolism , Cell Proliferation , Apoptosis/genetics , Mitochondria , Cholesterol/metabolism , Cholesterol/pharmacology , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL