Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(35): 48103-48121, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39017869

ABSTRACT

We have adopted a novel CeO2/Bi2MoO6/g-C3N4-based ternary nanocomposite that was synthesized via hydrothermal technique. The physiochemical characterization of as-prepared samples was examined through various analytical techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy TEM, photoluminescent spectra (PL), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET), and ultraviolet diffuse reflectance spectroscopy (UV-DRS) technique. In addition, the photocatalytic performance was carried out by degradation of Rhodamine B dye under visible light irradiation using this nanocatalyst. The ternary nanocomposite achieved 94% of the degradation efficiency within 100 min which is higher than the pristine and binary composites under the predetermined condition pH = 7, Rhodamine B dye = 5 mg/L, and catalyst concentration = 150 mg/L. The experimental synergetic effect of CeO2/Bi2MoO6/g-C3N4 ternary nanocomposite has been ascribed to the interfacial charge carrier migration between CeO2, Bi2MoO6, and g-C3N4. The optical absorption range of CeO2/Bi2MoO6/g-C3N4 ternary nanocomposite was enhanced, and the band gap was reduced up to 2.2 eV. In addition, scavenger trapping experiment proves that the super oxide anions (O2-.) and photogenerated holes are the major active species. The reusability and stability experiment proved the CeO2/Bi2MoO6/g-C3N4 ternary nanocomposite keeps good durability during the photocatalytic degradation process after the five successive cycles. Furthermore, based on the results, the charge carrier transfer photocatalytic mechanism was also discussed. This CeO2/Bi2MoO6/g-C3N4 ternary nanocomposite may offer the cheapest material and extend the great opportunity for clean and environmental remediation approach under the visible light irradiation.


Subject(s)
Cerium , Rhodamines , Rhodamines/chemistry , Cerium/chemistry , Catalysis , Nanospheres/chemistry , Bismuth/chemistry , Environmental Pollutants/chemistry , Nanocomposites/chemistry , Molybdenum/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL