Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Oncol ; 31(7): 3690-3697, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39057144

ABSTRACT

BACKGROUND: In current clinical practice, intensity-modulated proton therapy (IMPT) head and neck cancer (HNC) plans are generated using a constant relative biological effectiveness (cRBE) of 1.1. The primary goal of this study was to explore the dosimetric impact of proton range uncertainties on RBE-weighted dose (RWD) distributions using a variable RBE (vRBE) model in the context of bilateral HNC IMPT plans. METHODS: The current study included the computed tomography (CT) datasets of ten bilateral HNC patients who had undergone photon therapy. Each patient's plan was generated using three IMPT beams to deliver doses to the CTV_High and CTV_Low for doses of 70 Gy(RBE) and 54 Gy(RBE), respectively, in 35 fractions through a simultaneous integrated boost (SIB) technique. Each nominal plan calculated with a cRBE of 1.1 was subjected to the range uncertainties of ±3%. The McNamara vRBE model was used for RWD calculations. For each patient, the differences in dosimetric metrices between the RWD and nominal dose distributions were compared. RESULTS: The constrictor muscles, oral cavity, parotids, larynx, thyroid, and esophagus showed average differences in mean dose (Dmean) values up to 6.91 Gy(RBE), indicating the impact of proton range uncertainties on RWD distributions. Similarly, the brachial plexus, brain, brainstem, spinal cord, and mandible showed varying degrees of the average differences in maximum dose (Dmax) values (2.78-10.75 Gy(RBE)). The Dmean and Dmax to the CTV from RWD distributions were within ±2% of the dosimetric results in nominal plans. CONCLUSION: The consistent trend of higher mean and maximum doses to the OARs with the McNamara vRBE model compared to cRBE model highlighted the need for consideration of proton range uncertainties while evaluating OAR doses in bilateral HNC IMPT plans.


Subject(s)
Head and Neck Neoplasms , Proton Therapy , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Humans , Head and Neck Neoplasms/radiotherapy , Proton Therapy/methods , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Planning, Computer-Assisted/methods , Uncertainty , Relative Biological Effectiveness , Radiometry/methods
2.
Ecol Evol ; 14(2): e10884, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38343575

ABSTRACT

Differences in the number of alien plant species in different locations may reflect climatic and other controls that similarly affect native species and/or propagule pressure accompanied with delayed spread from the point of introduction. We set out to examine these alternatives for Himalayan plants, in a phylogenetic framework. We build a database of alien plant distributions for the Himalaya. Focusing on the well-documented regions of Jammu & Kashmir (west) and Bhutan (east) we compare alien and native species for (1) richness patterns, (2) degree of phylogenetic clustering, (3) the extent to which species-poor regions are subsets of species-rich regions and (4) continental and climatic affinities/source. We document 1470 alien species (at least 600 naturalised), which comprise ~14% of the vascular plants known from the Himalaya. Alien plant species with tropical affinities decline in richness with elevation and species at high elevations form a subset of those at lower elevations, supporting location of introduction as an important driver of alien plant richness patterns. Separately, elevations which are especially rich in native plant species are also rich in alien plant species, suggesting an important role for climate (high productivity) in determining both native and alien richness. We find no support for the proposition that variance in human disturbance or numbers of native species correlate with alien distributions. Results imply an ongoing expansion of alien species from low elevation sources, some of which are highly invasive.

3.
Chem Biodivers ; 21(5): e202301830, 2024 May.
Article in English | MEDLINE | ID: mdl-38289898

ABSTRACT

The genus Malaxis (family Orchidaceae), comprises nearly 183 species available across the globe. The plants of this genus have long been employed in traditional medical practices because of their numerous biological properties, like the treatment of infertility, hemostasis, burning sensation, bleeding diathesis, fever, diarrhea, dysentery, febrifuge, tuberculosis, etc. Various reports highlight their phytochemical composition and biological activities. However, there is a lack of systematic review on the distribution, phytochemistry, and biological properties of this genus. Hence, this study aims to conduct a thorough and critical review of Malaxis species, covering data published from 1965 to 2022 with nearly 90 articles. Also, it examines different bioactive compounds, their chemistry, and pharmacotherapeutics as well as their traditional uses. A total of 189 unique compounds, including the oil constituents were recorded from Malaxis species. The highest active ingredients were obtained from Malaxis acuminata (103) followed by Malaxis muscifera (49) and Malaxis rheedei (33). In conclusion, this review offers an overview of the current state of knowledge on Malaxis species and highlights prospects for future research projects on them. Additionally, it recommends the promotion of domestication studies for rare medicinal orchids like Malaxis and the prompt implementation of conservation measures.


Subject(s)
Orchidaceae , Phytochemicals , Orchidaceae/chemistry , Phytochemicals/chemistry , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Humans , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL