Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Immunohorizons ; 8(6): 431-441, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38888412

ABSTRACT

IgE-mediated mast cell (MC) activation is a critical component of allergic responses to oral Ags. Several T cell-derived cytokines have been shown to promote MC reactivity, and we recently demonstrated a critical role for the cytokine IL-10 in mediating MC responses during food allergy. In this study, we further validate the role of IL-10 using Ab-mediated IL-10 depletion. IL-10 neutralization significantly attenuated MC responses, leading to decreased MC accumulation and activation, as well as inhibition of MC-mediated symptoms such as allergic diarrhea. This was accompanied by decreased Th2 cytokine gene expression, attenuated systemic T cell responses, and fewer CD4 T cells, B cells, and MCs in the spleen. Our data further confirm the role of IL-10 in driving MC responses and suggest that IL-10-responsive MCs may constitute an important player in allergic responses.


Subject(s)
Disease Models, Animal , Food Hypersensitivity , Interleukin-10 , Mast Cells , Animals , Female , Mice , Antibodies, Neutralizing/immunology , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Food Hypersensitivity/immunology , Immunoglobulin E/immunology , Interleukin-10/metabolism , Mast Cells/immunology , Mast Cells/metabolism , Mice, Inbred BALB C , Spleen/immunology , Spleen/cytology , Th2 Cells/immunology , Male
3.
J Immunol ; 212(9): 1407-1419, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38497670

ABSTRACT

Mast cells (MCs) play critical roles in the establishment of allergic diseases. We recently demonstrated an unexpected, proinflammatory role for IL-10 in regulating MC responses. IL-10 enhanced MC activation and promoted IgE-dependent responses during food allergy. However, whether these effects extend to IgE-independent stimuli is not clear. In this article, we demonstrate that IL-10 plays a critical role in driving IL-33-mediated MC responses. IL-10 stimulation enhanced MC expansion and degranulation, ST2 expression, IL-13 production, and phospho-relA upregulation in IL-33-treated cells while suppressing TNF-α. These effects were partly dependent on endogenous IL-10 and further amplified in MCs coactivated with both IL-33 and IgE/Ag. IL-10's divergent effects also extended in vivo. In a MC-dependent model of IL-33-induced neutrophilia, IL-10 treatment enhanced MC responsiveness, leading to suppression of neutrophils and decreased TNF-α. In contrast, during IL-33-induced type 2 inflammation, IL-10 priming exacerbated MC activity, resulting in MC recruitment to various tissues, enhanced ST2 expression, induction of hypothermia, recruitment of eosinophils, and increased MCPT-1 and IL-13 levels. Our data elucidate an important role for IL-10 as an augmenter of IL-33-mediated MC responses, with implications during both allergic diseases and other MC-dependent disorders. IL-10 induction is routinely used as a prognostic marker of disease improvement. Our data suggest instead that IL-10 can enhance ST2 responsiveness in IL-33-activated MCs, with the potential to both aggravate or suppress disease severity depending on the inflammatory context.


Subject(s)
Food Hypersensitivity , Mast Cells , Humans , Mast Cells/metabolism , Interleukin-10/metabolism , Tumor Necrosis Factor-alpha/metabolism , Immunoglobulin E/metabolism , Interleukin-33/metabolism , Interleukin-13/metabolism , Interleukin-1 Receptor-Like 1 Protein/metabolism , Inflammation/metabolism , Cell Degranulation
4.
Res Sq ; 2023 May 19.
Article in English | MEDLINE | ID: mdl-37293046

ABSTRACT

Background: Intergenic transcription, either failure to terminate at the transcription end site (TES), or transcription initiation at other intergenic regions, is present in cultured cells and enhanced in the presence of stressors such as viral infection. Transcription termination failure has not been characterized in natural biological samples such as pre-implantation embryos which express more than 10,000 genes and undergo drastic changes in DNA methylation. Results: Using Automatic Readthrough Transcription Detection (ARTDeco) and data of in vivo developed bovine oocytes and embryos, we found abundant intergenic transcripts that we termed as read-outs (transcribed from 5 to 15 kb after TES) and read-ins (transcribed 1 kb up-stream of reference genes, extending up to 15 kb up-stream). Read-throughs (continued transcription from TES of expressed reference genes, 4-15 kb in length), however, were much fewer. For example, the numbers of read-outs and read-ins ranged from 3,084 to 6,565 or 33.36-66.67% of expressed reference genes at different stages of embryo development. The less copious read-throughs were at an average of 10% and significantly correlated with reference gene expression (P < 0.05). Interestingly, intergenic transcription did not seem to be random because many intergenic transcripts (1,504 read-outs, 1,045 read-ins, and 1,021 read-throughs) were associated with common reference genes across all stages of pre-implantation development. Their expression also seemed to be regulated by developmental stages because many were differentially expressed (log2 fold change ≥ 2, P < 0.05). Additionally, while gradual but un-patterned decreases in DNA methylation densities 10 kb both up- and down-stream of the intergenic transcribed regions were observed, the correlation between intergenic transcription and DNA methylation was insignificant. Finally, transcription factor binding motifs and polyadenylation signals were found in 27.2% and 12.15% of intergenic transcripts, respectively, suggesting considerable novel transcription initiation and RNA processing. Conclusion: In summary, in vivo developed oocytes and pre-implantation embryos express large numbers of intergenic transcripts, which are not related to the overall DNA methylation profiles either up- or down-stream.

5.
Front Microbiol ; 13: 888433, 2022.
Article in English | MEDLINE | ID: mdl-35733968

ABSTRACT

Mycoplasma bovis (M. bovis) is an insidious, wall-less primary bacterial pathogen that causes bovine pneumonia, mid-ear infection, mastitis, and arthritis. The economic losses caused by M. bovis due to culling, diminished milk production, and feed conversion are underestimated because of poor diagnosis/recognition. Treatment with common antibiotics targeting the cell wall is ineffective. Plant-derived antimicrobials (PDAs) such as food-grade trans-cinnamaldehyde (TC), eugenol (EU), and carvacrol (CAR) are inexpensive and generally regarded as safe for humans and animals yet possess strong anti-bacterial properties. In preliminary studies, we found that all three PDAs inhibited the growth of M. bovis in vitro. Through RNA sequencing, we report here that CAR affected the expression of 153 genes which included the downregulation of energy generation-related proteins, pentose phosphate pathway, and upregulation of ribosomes and translation-related proteins. Few differentially expressed genes were found when M. bovis was treated with TC, EU, or when the three PDAs were double or triple combined. Our results suggest that, as opposed to the effect of CAR, the growth-inhibitory effects of TC and EU at levels tested may be exerted through mechanisms other than gene expression regulations.

6.
Sci Rep ; 11(1): 16281, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34381064

ABSTRACT

Essential oils and their active components, referred here as plant derived antimicrobials (PDAs), have been used for their antimicrobial, anti-inflammatory and antioxidant properties. Many reports also document PDAs' cytotoxic effects on cancerous cells, raising the hope that they could be used for cancer treatments. Due to the lack of specificity, we hypothesize that PDAs are cytotoxic to both cancerous and non-cancerous cells. Trans-cinnamaldehyde (TCA), carvacrol, and eugenol were assessed for their cytotoxicity on cancerous HeLa cells and normal skin fibroblasts (CCD-1123Sk, CCD) by MTT and LDH assays, flow cytometry, and reverse transcription quantitative PCR (RT-qPCR). After 24 h of treatment, carvacrol and TCA significantly decreased cell viability (by more than 50%) at 100 µg/ml, whereas eugenol was ineffective up to 400 µg/ml. Cell detachment and significantly increased apoptosis were observed with 100 µg/ml of TCA on both cell types. RT-qPCR for apoptotic genes (BCL2, CASP3 and CASP8) and necrosis genes (MLKL, RIPK1 and RIPK3) did not show significant differences between control and treated cells of both types, with the exception of eugenol-treated HeLa cells in which expression of BCL2, MLKL and RIPK1 was significantly higher than controls. Taken together, we conclude that the three PDAs studied here exhibited similar cytotoxic effects on both cancerous and non-cancerous cells.


Subject(s)
Acrolein/analogs & derivatives , Cymenes/pharmacology , Cytotoxins/pharmacology , Eugenol/pharmacology , Acrolein/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Fibroblasts/drug effects , HeLa Cells , Humans , Oils, Volatile/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL